Lecture 1

Introduction to Analysis of Algorithms

View in slide-show mode
Algorithm Definition

- **Algorithm**: A sequence of computational steps that transform the input to the desired output

- Procedure vs. algorithm
 - An algorithm *must halt within finite time* with the right output

- Example:

 a sequence of n numbers \rightarrow Sorting Algorithm \rightarrow sorted permutation of input sequence
Many Real World Applications

- **Bioinformatics**
 - Determine/compare DNA sequences

- **Internet**
 - Manage/manipulate/route data

- **Information retrieval**
 - Search and access information in large data

- **Security**
 - Encode & decode personal/financial/confidential data

- **Electronic design automation**
 - Minimize human effort in chip-design process
Course Objectives

- Learn basic algorithms & data structures
- Gain skills to design new algorithms
- Focus on efficient algorithms
- Design algorithms that
 - are fast
 - use as little memory as possible
 - are correct!
Outline of Lecture 1

- Study two sorting algorithms as examples
 - Insertion sort: Incremental algorithm
 - Merge sort: Divide-and-conquer

- Introduction to runtime analysis
 - Best vs. worst vs. average case
 - Asymptotic analysis
Sorting Problem

Input: Sequence of numbers

\[\langle a_1, a_2, \ldots, a_n \rangle \]

Output: A permutation

\[\Pi = \langle \Pi(1), \Pi(2), \ldots, \Pi(n) \rangle \]

such that

\[a_{\Pi(1)} \leq a_{\Pi(2)} \leq \ldots \leq a_{\Pi(n)} \]
Insertion Sort
Insertion Sort: Basic Idea

- Assume input array: A[1..n]
- Iterate j from 2 to n

![Diagram of Insertion Sort]

- already sorted
- insert into sorted array
- sorted subarray
Objective: Express algorithms to humans in a clear and concise way

Liberal use of English

Indentation for block structures

Omission of error handling and other details

→ needed in real programs
Algorithm: Insertion Sort (from Section 2.2)

Insertion-Sort (A)

1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
5. A[i+1] ← A[i];
6. i ← i - 1;
7. endwhile
8. A[i+1] ← key;
endfor
Algorithm: Insertion Sort

Insertion-Sort (A)

1. for \(j \leftarrow 2 \) to \(n \) do
2. \(\text{key} \leftarrow A[j]; \)
3. \(i \leftarrow j - 1; \)
4. while \(i > 0 \) and \(A[i] > \text{key} \) do
 5. \(A[i+1] \leftarrow A[i]; \)
 6. \(i \leftarrow i - 1; \)
endwhile
7. \(A[i+1] \leftarrow \text{key}; \)
endfor

Iterate over array elts \(j \)

Loop invariant:

The subarray \(A[1..j-1] \) is always sorted

already sorted

\(j \)

\(\text{key} \)
Algorithm: Insertion Sort

Insertion-Sort (A)

1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
 5. A[i+1] ← A[i];
 6. i ← i - 1;
endwhile
7. A[i+1] ← key;
endfor
Algorithm: Insertion Sort

Insertion-Sort (A)

1. for \(j \leftarrow 2 \) to \(n \) do
2. \(\text{key} \leftarrow A[j]; \)
3. \(i \leftarrow j - 1; \)
4. while \(i > 0 \) and \(A[i] > \text{key} \) do
 5. \(A[i+1] \leftarrow A[i]; \)
 6. \(i \leftarrow i - 1; \)
5. \(A[i+1] \leftarrow \text{key}; \)
6. endwhile
7. \(\text{End of iter } j: A[1..j] \text{ is sorted} \)

Insert key to the correct location
Insertion Sort - Example

Insertion-Sort (A)

1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
 5. A[i+1] ← A[i];
 6. i ← i - 1;
endwhile
7. A[i+1] ← key;
endfor
Insertion Sort - Example: Iteration j=2

Insertion-Sort (A)

1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
 5. A[i+1] ← A[i];
 6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
endfor
Insertion Sort - Example: Iteration $j=3$

Insertion-Sort (A)

1. for $j \leftarrow 2$ to n do
2. key $\leftarrow A[j]$;
3. $i \leftarrow j - 1$;
4. while $i > 0$ and $A[i] > key$ do
 5. $A[i+1] \leftarrow A[i]$;
 6. $i \leftarrow i - 1$;
 endwhile
7. $A[i+1] \leftarrow key$;
endfor

What are the entries at the end of iteration $j=3$?
Insertion Sort - Example: Iteration j=3

Insertion-Sort (A)

1. **for** j ← 2 to n **do**
2. key ← A[j];
3. i ← j - 1;
4. **while** i > 0 and A[i] > key **do**
5. A[i+1] ← A[i];
6. i ← i - 1;
endwhile
7. A[i+1] ← key;
endfor
Insertion Sort - Example: Iteration j=4

Insertion-Sort (A)

1. for \(j \leftarrow 2 \) to \(n \) do
2. \(\text{key} \leftarrow A[j]; \)
3. \(i \leftarrow j - 1; \)
4. while \(i > 0 \) and \(A[i] > \text{key} \) do
 5. \(A[i+1] \leftarrow A[i]; \)
 6. \(i \leftarrow i - 1; \)
endwhile
7. \(A[i+1] \leftarrow \text{key}; \)
endfor

initial

sorted

shift

insert key

key=6
Insertion Sort - Example: Iteration $j=5$

Insertion-Sort (A)

1. for $j \leftarrow 2$ to n do
2. key $\leftarrow A[j]$;
3. $i \leftarrow j - 1$;
4. while $i > 0$ and $A[i] >$ key do
 5. $A[i+1] \leftarrow A[i]$;
 6. $i \leftarrow i - 1$;
 endwhile
7. $A[i+1] \leftarrow$ key;
endfor

What are the entries at the end of iteration $j=5$?
Insertion Sort - Example: Iteration j=5

Insertion-Sort (A)
1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
5. A[i+1] ← A[i];
6. i ← i - 1;
endwhile
7. A[i+1] ← key;
endfor
Insertion Sort - Example: Iteration j=6

Insertion-Sort (A)

1. **for** \(j \leftarrow 2 \) **to** \(n \) **do**
2. \(\text{key} \leftarrow A[j] \);
3. \(i \leftarrow j - 1 \);
4. **while** \(i > 0 \) **and** \(A[i] > \text{key} \) **do**
5. \(A[i+1] \leftarrow A[i] \);
6. \(i \leftarrow i - 1 \);
endwhile
7. \(A[i+1] \leftarrow \text{key} \);
endfor

Initial

\[1 \ 2 \ 4 \ 5 \ 6 \ 3 \]

Sorted

\[1 \ 2 \ 4 \ 5 \ 6 \ 3 \]

Shift

\[<3 \ >3 \ >3 \ >3 \ j \]

Insert key

\[1 \ 2 \ 3 \ 4 \ 5 \ 6 \]
Insertion Sort Algorithm - Notes

- Items sorted in-place
 - Elements rearranged within array
 - At most constant number of items stored outside the array at any time (e.g. the variable key)
 - Input array A contains sorted output sequence when the algorithm ends

- Incremental approach
 - Having sorted A[1..j-1], place A[j] correctly so that A[1..j] is sorted
Running Time

- **Depends on:**
 - **Input size** (e.g., 6 elements vs 6M elements)
 - **Input itself** (e.g., partially sorted)

- Usually want *upper bound*
Kinds of running time analysis

- **Worst Case (Usually)** \[T(n) = \text{max time on any input of size } n \]
- **Average Case (Sometimes)** \[T(n) = \text{average time over all inputs of size } n \]
 Assumes statistical distribution of inputs
- **Best Case (Rarely)** \[T(n) = \text{min time on any input of size } n \]
 - BAD*: Cheat with slow algorithm that works fast on some inputs
 - GOOD: Only for showing bad lower bound

*Can modify any algorithm (almost) to have a low best-case running time
 - Check whether input constitutes an output at the very beginning of the algorithm
Running Time

For **Insertion-Sort**, what is its **worst-case** time?
- Depends on speed of primitive operations
 - Relative speed (on same machine)
 - Absolute speed (on different machines)

- Asymptotic analysis
 - Ignore machine-dependent constants
 - Look at growth of $T(n)$ as $n \to \infty$
\(\Theta \) Notation

- Drop low order terms
- Ignore leading constants

\[2n^2 + 5n + 3 = \Theta(n^2) \]
\[3n^3 + 90n^2 - 2n + 5 = \Theta(n^3) \]

- Formal explanations in the next lecture.
• As \(n \) gets large, a \(\Theta(n^2) \) algorithm runs faster than a \(\Theta(n^3) \) algorithm.
Insertion Sort – Runtime Analysis

<table>
<thead>
<tr>
<th>Cost</th>
<th>Insertion-Sort (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_1</td>
<td>1. for $j \leftarrow 2$ to n do</td>
</tr>
<tr>
<td>c_2</td>
<td>2. key $\leftarrow A[j]$;</td>
</tr>
<tr>
<td>c_3</td>
<td>3. $i \leftarrow j - 1$;</td>
</tr>
<tr>
<td>c_4</td>
<td>4. while $i > 0$ and $A[i] > key$ do</td>
</tr>
<tr>
<td>c_5</td>
<td>5. $A[i+1] \leftarrow A[i]$;</td>
</tr>
<tr>
<td>c_6</td>
<td>6. $i \leftarrow i - 1$;</td>
</tr>
<tr>
<td>c_7</td>
<td>7. $A[i+1] \leftarrow key$;</td>
</tr>
</tbody>
</table>

t_j: The number of times while loop test is executed for j
How many times is each line executed?

<table>
<thead>
<tr>
<th># times</th>
<th>Insertion-Sort ((A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>1. (\text{for } j \leftarrow 2 \text{ to } n \text{ do})</td>
</tr>
<tr>
<td>(n-1)</td>
<td>2. (\text{key } \leftarrow A[j];)</td>
</tr>
<tr>
<td>(n-1)</td>
<td>3. (i \leftarrow j - 1;)</td>
</tr>
<tr>
<td>(k_4)</td>
<td>4. (\text{while } i > 0 \text{ and } A[i] > \text{key} \text{ do})</td>
</tr>
<tr>
<td>(k_5)</td>
<td>5. (A[i+1] \leftarrow A[i];)</td>
</tr>
<tr>
<td>(k_6)</td>
<td>6. (i \leftarrow i - 1;) endwhile</td>
</tr>
<tr>
<td>(n-1)</td>
<td>7. (A[i+1] \leftarrow \text{key};) endfor</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
k_4 & = \sum_{j=2}^{n} t_j \\
k_5 & = \left(\sum_{j=2}^{n} t_j \right) - \left(\sum_{j=2}^{n} 1\right) \\
k_6 & = \left(\sum_{j=2}^{n} t_j \right) - \left(\sum_{j=2}^{n} 1\right)
\end{align*}
\]
Insertion Sort – Runtime Analysis

- Sum up costs:

\[T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 \sum_{j=2}^{n} t_j + \]

\[c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 (n - 1) \]

- What is the best case runtime? \(\frac{3}{2} \)

- What is the worst case runtime? \(\frac{5}{2} \)
Question: If A[1...j] is already sorted, \(t_j = ? \)

Insertion-Sort (A)

1. **for** \(j \leftarrow 2 \) **to** \(n \) **do**
2. \(\text{key} \leftarrow A[j]; \)
3. \(i \leftarrow j - 1; \)
4. **while** \(i > 0 \) **and** \(A[i] > \text{key} \) **do**
 5. \(A[i+1] \leftarrow A[i]; \)
 6. \(i \leftarrow i - 1; \)
5. **endwhile**
6. \(A[i+1] \leftarrow \text{key}; \)
7. **endfor**

\(t_j = 1 \)
Insertion Sort – Best Case Runtime

- Original function:

\[T(n) = c_1 n + c_2 (n - 1) + c_3 (n - 1) + c_4 \sum_{j=2}^{n} t_j + \]

\[c_5 (t_j - 1) + c_6 (t_j - 1) + c_7 (n - 1) \]

- Best-case: Input array is already sorted

\[t_j = 1 \text{ for all } j \]

\[T(n) = (c_1 + c_2 + c_3 + c_4 + c_7) n - (c_2 + c_3 + c_4 + c_7) \]
Q: If $A[j]$ is smaller than every entry in $A[1..j-1]$, $t_j =$?

Insertion-Sort (A)

1. for $j \leftarrow 2$ to n do
2. key $\leftarrow A[j]$;
3. $i \leftarrow j - 1$;
4. while $i > 0$ and $A[i] > key$ do
 5. $A[i+1] \leftarrow A[i]$;
 6. $i \leftarrow i - 1$;
endwhile
7. $A[i+1] \leftarrow key$;
endfor

$t_j = j$
Insertion Sort – Worst Case Runtime

- Worst case: The input array is reverse sorted
 \(t_j = j \) for all \(j \)

- After derivation, worst case runtime:

\[
T(n) = \frac{1}{2} (c_4 + c_5 + c_6)n^2 + (c_1 + c_2 + c_3 + \frac{1}{2} (c_4 - c_5 - c_6) + c_7)n (c_2 + c_3 + c_4 + c_7)
\]
Insertion Sort – Asymptotic Runtime Analysis

Insertion-Sort (A)

1. for \(j \leftarrow 2 \) to \(n \) do
2. key \(\leftarrow A[j]; \)
3. \(i \leftarrow j - 1; \)
4. while \(i > 0 \) and \(A[i] > key \) do
5. \(A[i+1] \leftarrow A[i]; \)
6. \(i \leftarrow i - 1; \)
 endwhile
7. \(A[i+1] \leftarrow key; \)
endfor

\[
T(n) = \sum_{j=2}^{n} (\Theta(1) + \Theta(1) + \Theta(1)) = \Theta(1) + \Theta(1) + \Theta(1) = \Theta(n) = \sum_{j=2}^{n} \Theta(j)
\]
Asymptotic Runtime Analysis of Insertion-Sort

• **Worst-case** (input reverse sorted)
 \[T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta\left(\sum_{j=2}^{n} j\right) = \Theta(n^2) \]

 Inner loop is \(\Theta(j) \)

• **Average case** (all permutations equally likely)
 \[T(n) = \sum_{j=2}^{n} \Theta(j/2) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^2) \]

 Inner loop is \(\Theta(j/2) \)

• Often, average case not much better than worst case

• Is this a fast sorting algorithm?
 – Yes, for small \(n \). No, for large \(n \).
Merge Sort
Merge Sort: Basic Idea

Input array A

- Divide: Original problem into two subproblems
- Conquer: Sort this half, sort this half
- Combine: Merge two sorted halves
Merge-Sort \((A, p, r)\)

\[
\text{if } p = r \text{ then return;}
\]

\[
\text{else}
\]

\[
q \leftarrow \lfloor (p+r)/2 \rfloor;
\]

\[
\text{Merge-Sort } (A, p, q);
\]

\[
\text{Merge-Sort } (A, q+1, r);
\]

\[
\text{Merge } (A, p, q, r);
\]

\[
\text{endif}
\]
Merge Sort: Example

\[\text{Merge-Sort} \ (A, p, r) \]
\[
\quad \text{if} \ p = r \ \text{then} \\
\quad \quad \text{return} \\
\quad \text{else} \\
\quad \quad q \leftarrow \lfloor (p+r)/2 \rfloor \\
\quad \quad \text{Merge-Sort} \ (A, p, q) \\
\quad \quad \text{Merge-Sort} \ (A, q+1, r) \\
\quad \quad \text{Merge} \ (A, p, q, r) \\
\quad \text{endif}
\]
How to merge 2 sorted subarrays?

- **HW:** Study the pseudo-code in the textbook (Sec. 2.3.1)
- What is the complexity of this step? $\Theta(n)$
Merge Sort: Correctness

Base case: \(p = r \)
\[
\rightarrow \text{Trivially correct}
\]

Inductive hypothesis: MERGE-SORT is correct for any subarray that is a strict (smaller) subset of \(A[p, q] \).

General Case: MERGE-SORT is correct for \(A[p, q] \).
\[
\rightarrow \text{From inductive hypothesis and correctness of Merge.}
\]
Merge Sort: Complexity

Merge-Sort (A, p, r)

if p = r then
 return
else
 q ← \lfloor (p+r)/2 \rfloor
 Merge-Sort (A, p, q)
 Merge-Sort (A, q+1, r)
endif

Merge (A, p, q, r)

\[T(n) = \begin{cases} \Theta(1) & \text{if } p = r \\ \Theta(n) & \text{else} \end{cases} \]

\[T(n) = 2T(n/2) + \Theta(n) \]

\[\Theta(n \log n) \]

\[\Theta(n) \]
Merge Sort – Recurrence

- Describe a function recursively in terms of itself
- To analyze the performance of recursive algorithms

For merge sort:

\[T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1 \\
2T(n/2) + \Theta(n) & \text{otherwise}
\end{cases} \]
How to solve for $T(n)$?

$T(n) = \begin{cases}
\Theta(1) & \text{if } n = 1 \\
2T(n/2) + \Theta(n) & \text{otherwise}
\end{cases}$

- Generally, we will assume $T(n) = \Theta(1)$ for sufficiently small n.

- The recurrence above can be rewritten as:
 $$T(n) = 2T(n/2) + \Theta(n)$$

- How to solve this recurrence?
Solve Recurrence: \(T(n) = 2T(n/2) + \Theta(n) \)
Solve Recurrence: \(T(n) = 2T(n/2) + \Theta(n) \)
Solve Recurrence: $T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n)$

$h = \text{height of the recursion tree!}$

$h = \log_2 n$

$\Theta(n)$

$\Theta(n/2)$

$\Theta(n/2)$

$\Theta(n/2)$

$\Theta(n/2)$

$\Theta(n/4)$

$\Theta(n/4)$

$\Theta(n/4)$

$\Theta(n/4)$

$\Theta(1)$

$\Theta(1)$

$\Theta(1)$

$\Theta(1)$

$\Theta(1)$

$\Theta(1)$

$\Theta(1)$

$\Theta(1)$

Total: $\Theta(n \log n)$
Merge Sort Complexity

- Recurrence:
 \[T(n) = 2T(n/2) + \Theta(n) \]

- Solution to recurrence:
 \[T(n) = \Theta(n \log n) \]
Conclusions: **Insertion Sort** vs. **Merge Sort**

- $\Theta(n \log n)$ grows more slowly than $\Theta(n^2)$

- Therefore **Merge-Sort** beats **Insertion-Sort** in the worst case

- In practice, **Merge-Sort** beats **Insertion-Sort** for $n > 30$ or so.