Lecture 9

Sorting in Linear Time

View in slide-show mode
How Fast Can We Sort?

- The algorithms we have seen so far:
 - Based on comparison of elements
 - We only care about the relative ordering between the elements (not the actual values)
 - The smallest worst-case runtime we have seen so far: $O(n \log n)$
 - Is $O(n \log n)$ the best we can do?

- **Comparison sorts**: Only use comparisons to determine the relative order of elements.
Decision Trees for Comparison Sorts

- Represent a sorting algorithm abstractly in terms of a decision tree
 - A binary tree that represents the comparisons between elements in the sorting algorithm
 - Control, data movement, and other aspects are ignored

- One decision tree corresponds to one sorting algorithm and one value of n (input size)
Reminder: Insertion Sort (from Lecture 1)

Insertion-Sort \((A)\)

1. for \(j \leftarrow 2\) to \(n\) do
2. key \(\leftarrow A[j];\)
3. \(i \leftarrow j - 1;\)
4. while \(i > 0\) and \(A[i] > \text{key}\) do
 5. \(A[i+1] \leftarrow A[i];\)
 6. \(i \leftarrow i - 1;\)
endwhile
7. \(A[i+1] \leftarrow \text{key};\)
endfor

Loop invariant:
The subarray \(A[1..j-1]\) is always sorted

Iterate over array elts \(j\)

already sorted

\(j\)

key
Reminder: Insertion Sort (from Lecture 1)

Insertion-Sort (A)

1. for \(j \leftarrow 2 \) to \(n \) do
2. \(\text{key} \leftarrow A[j]; \)
3. \(i \leftarrow j - 1; \)
4. **while** \(i > 0 \) and \(A[i] > \text{key} \) **do**
5. \(A[i+1] \leftarrow A[i]; \)
6. \(i \leftarrow i - 1; \)
7. endwhile
8. endfor

Shift right the entries in \(A[1..j-1] \) that are \(> \text{key} \)

already sorted
Reminder: Insertion Sort (from Lecture 1)

Insertion-Sort (A)

1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
 5. A[i+1] ← A[i];
 6. i ← i - 1;
endwhile
7. A[i+1] ← key;
endfor

Insert key to the correct location

End of iter j: A[1..j] is sorted
Different Outcomes for Insertion Sort and n=3

Input: $<a_1, a_2, a_3>$
Decision Tree for Insertion Sort and n=3
Decision Tree Model for Comparison Sorts

- **Internal node** \((i:j)\): Comparison between elements \(a_i\) and \(a_j\)

- **Leaf node**: An output of the sorting algorithm

- **Path from root to a leaf**: The execution of the sorting algorithm for a given input

- All possible executions are captured by the decision tree

- All possible outcomes (permutations) are in the leaf nodes
Decision Tree for Insertion Sort and $n=3$

Input: $<9, 4, 6>$

Output: $<4, 6, 9>$
Decision Tree Model

- A decision tree can model the execution of any comparison sort:
 - One tree for each input size \(n \)
 - View the algorithm as splitting whenever it compares two elements
 - The tree contains the comparisons along all possible instruction traces

The running time of the algorithm = the length of the path taken
Worst case running time = height of the tree
Lower Bound for Comparison Sorts

- Let n be the number of elements in the input array.
- What is the min number of leaves in the decision tree?
 \[n! \] (because there are $n!$ permutations of the input array, and all possible outputs must be captured in the leaves)
- What is the max number of leaves in a binary tree of height h?
 \[2^h \]

- So, we must have:
 \[2^h \geq n! \]
Lower Bound for Decision Tree Sorting

Theorem: Any comparison sort algorithm requires $\Omega(n \log n)$ comparisons in the worst case.

Proof: We’ll prove that any decision tree corresponding to a comparison sort algorithm must have height $\Omega(n \log n)$

\[
2^h \geq n! \quad \text{(from previous slide)}
\]

\[
h \geq \log(n!)
\]

\[
\geq \log((n/e)^n) \quad \text{(Stirling’s approximation)}
\]

\[
= n \log n - n \log e
\]

\[
= \Omega(n \log n)
\]
Corollary: Heapsort and merge sort are asymptotically optimal comparison sorts.

Proof: The $O(n\log n)$ upper bounds on the runtimes for heapsort and merge sort match the $\Omega(n\log n)$ worst-case lower bound from the previous theorem.
Sorting in Linear Time

Counting sort: No comparisons between elements

Input: $A[1 \ldots n]$, where $A[j] \in \{1, 2, \ldots, k\}$

Output: $B[1 \ldots n]$, sorted

Auxiliary storage: $C[1 \ldots k]$
Counting Sort

for \(i \leftarrow 1 \) to \(k \) do
 \(C[i] \leftarrow 0 \)
for \(j \leftarrow 1 \) to \(n \) do
 \(C[A[j]] \leftarrow C[A[j]] + 1 \)
// \(C[i] = |\{\text{key} = i\}| \)
for \(i \leftarrow 2 \) to \(k \) do
 \(C[i] \leftarrow C[i] + C[i-1] \)
// \(C[i] = |\{\text{key} \leq i\}| \)
for \(j \leftarrow n \) downto \(1 \) do
 \(B[C[A[j]]] \leftarrow A[j] \)
 \(C[A[j]] \leftarrow C[A[j]] - 1 \)
Counting Sort

For $i \leftarrow 1$ to k do
 \[C[i] \leftarrow 0 \]
For $j \leftarrow 1$ to n do
 \[C[A[j]] \leftarrow C[A[j]] + 1 \]
 // $C[i] = |\{\text{key} = i\}|$
For $i \leftarrow 2$ to k do
 \[C[i] \leftarrow C[i] + C[i-1] \]
 // $C[i] = |\{\text{key} \leq i\}|$
For $j \leftarrow n$ downto 1 do
 \[B[C[A[j]]] \leftarrow A[j] \]
 \[C[A[j]] \leftarrow C[A[j]] - 1 \]

Step 1: Initialize all counts to 0

\[
\begin{align*}
\text{A:} & \quad \begin{bmatrix} 4 & 1 & 3 & 4 & 3 \end{bmatrix} \\
\text{B:} & \quad \begin{bmatrix} & & & & \end{bmatrix} \\
\text{C:} & \quad \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}
\end{align*}
\]
Counting Sort

for i ← 1 to k do
 C[i] ← 0
for j ← 1 to n do
 C[A[j]] ← C[A[j]] + 1
// C[i] = |\{key = i\}|

for i ← 2 to k do
 C[i] ← C[i] + C[i-1]
// C[i] = |\{key ≤ i\}|

for j ← n downto 1 do
 B[C[A[j]]] ← A[j]
 C[A[j]] ← C[A[j]] – 1

Step 2: Count the number of occurrences of each value in the input array

A: 4 1 3 4 3
B:
C: 1 0 2 2
Counting Sort

for $i \leftarrow 1$ to k do
 $C[i] \leftarrow 0$
for $j \leftarrow 1$ to n do
 $C[A[j]] \leftarrow C[A[j]] + 1$
 // $C[i] = |\{\text{key} = i\}|$
for $i \leftarrow 2$ to k do
 $C[i] \leftarrow C[i] + C[i-1]$
 // $C[i] = |\{\text{key} \leq i\}|$

for $j \leftarrow n$ downto 1 do
 $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

Step 3: Compute the number of elements less than or equal to each value

A: 4 1 3 4 3
B:

i
1 2 3 4
C: 1 1 3 5
Counting Sort

```plaintext
for i ← 1 to k do
    C[i] ← 0
for j ← 1 to n do
    C[A[j]] ← C[A[j]] + 1
    // C[i] = |{key = i}|
for i ← 2 to k do
    C[i] ← C[i] + C[i-1]
    // C[i] = |{key ≤ i}|
for j ← n downto 1 do
    B[C[A[j]]] ← A[j]
    C[A[j]] ← C[A[j]] – 1
```

Step 4: Populate the output array

There are \(C[3] = 3\) elts that are \(≤ 3\)

A: 4 1 3 4 3

B: 1 2 3 4 5

C: 1 1 2 5
Counting Sort

for i ← 1 to k do
 C[i] ← 0
for j ← 1 to n do
 C[A[j]] ← C[A[j]] + 1
 // C[i] = |{key = i}|

for i ← 2 to k do
 C[i] ← C[i] + C[i-1]
 // C[i] = |{key ≤ i}|

for j ← n downto 1 do
 B[C[A[j]]] ← A[j]
 C[A[j]] ← C[A[j]] − 1

Step 4: Populate the output array

There are C[4] = 5 elts that are ≤ 4

\[
\begin{array}{c|c|c|c|c|c}
 & 4 & 1 & 3 & 4 & 3 \\
\hline
A: & & & & & \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c|c|c|c}
 & 1 & 2 & 3 & 4 & 5 \\
\hline
B: & & & 3 & & \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c|c|c}
 & 1 & 2 & 3 & 4 \\
\hline
C: & 1 & 1 & 2 & 4 \\
\hline
\end{array}
\]
Counting Sort

for i ← 1 to k do
 C[i] ← 0
for j ← 1 to n do
 C[A[j]] ← C[A[j]] + 1
// C[i] = |\{key = i\}|

for i ← 2 to k do
 C[i] ← C[i] + C[i-1]
// C[i] = |\{key ≤ i\}|

for j ← n downto 1 do
 B[C[A[j]]] ← A[j]
 C[A[j]] ← C[A[j]] − 1

Step 4: Populate the output array

There are C[3] = 2 elts that are ≤ 3

A:
\[
\begin{array}{cccccc}
4 & 1 & 3 & 4 & 3 \\
\end{array}
\]

B:
\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 \\
\end{array}
\]

C:
\[
\begin{array}{cccc}
1 & 1 & 1 & 4 \\
\end{array}
\]
Counting Sort

for i ← 1 to k do
 C[i] ← 0
for j ← 1 to n do
 C[A[j]] ← C[A[j]] + 1
// C[i] = |{key = i}|
for i ← 2 to k do
 C[i] ← C[i] + C[i-1]
// C[i] = |{key ≤ i}|
for j ← n downto 1 do
 B[C[A[j]]] ← A[j]
 C[A[j]] ← C[A[j]] − 1

Step 4: Populate the output array

There are C[1] = 1 elts that are ≤ 1

A: 4 1 3 4 3
B: 1 2 3 4 5
C: 0 1 1 4
Counting Sort

for i ← 1 to k do
 C[i] ← 0
for j ← 1 to n do
 C[A[j]] ← C[A[j]] + 1 // C[i] = |{key = i}|

for i ← 2 to k do
 C[i] ← C[i] + C[i-1] // C[i] = |{key ≤ i}|

for j ← n downto 1 do
 B[C[A[j]]] ← A[j]
 C[A[j]] ← C[A[j]] − 1

Step 4: Populate the output array

There are C[4] = 4 elts that are ≤ 4

A: 4 1 3 4 3
B: 1 2 3 4 5
C: 0 1 1 3
Counting Sort: Runtime Analysis

for i ← 1 to k do
 C[i] ← 0
 \(\Theta(k) \)

for j ← 1 to n do
 C[A[j]] ← C[A[j]] + 1
 \(\Theta(n) \)
 // C[i] = |\{key = i\}|}

for i ← 2 to k do
 C[i] ← C[i] + C[i-1]
 \(\Theta(k) \)
 // C[i] = |\{key ≤ i\}|}

for j ← n downto 1 do
 B[C[A[j]]] ← A[j]
 \(\Theta(n) \)
 C[A[j]] ← C[A[j]] - 1

Total runtime: \(\Theta(n+k) \)

n: size of the input array
k: the range of input values
Counting Sort: Runtime

- Runtime is $\Theta(n+k)$
- If $k = O(n)$, then counting sort takes $\Theta(n)$

Question: We proved a lower bound of $\Theta(n \log n)$ before! Where is the fallacy?

Answer:
- $\Theta(n \log n)$ lower bound is for comparison-based sorting
- Counting sort is not a comparison sort
- In fact, not a single comparison between elements occurs!
Stable Sorting

- Counting sort is a **stable sort**: It preserves the input order among equal elements.
 - i.e. The numbers with the same value appear in the output array in the same order as they do in the input array.

Exercise: Which other sorting algorithms have this property?
Radix Sort

- **Origin**: Herman Hollerith’s card-sorting machine for the 1890 US Census.
- **Basic idea**: Digit-by-digit sorting

- Two variations:
 - Sort from MSD to LSD *(bad idea)*
 - Sort from LSD to MSD *(good idea)*

- **LSD/MSD**: Least/most significant digit
Herman Hollerith (1860-1929)

- The 1880 U.S. Census took almost 10 years to process.
- While a lecturer at MIT, Hollerith prototyped punched-card technology.
- His machines, including a “card sorter,” allowed the 1890 census total to be reported in 6 weeks.
- He founded the Tabulating Machine Company in 1911, which merged with other companies in 1924 to form International Business Machines (IBM).
Punched card: A piece of stiff paper that contains digital information represented by the presence or absence of holes.

- 12 rows and 24 columns
- Coded for age, state of residency, gender, etc.
“Modern” IBM card

- One character per column

So, that’s why text windows have 80 columns!
Hollerith Tabulating Machine and Sorter

- Mechanically sorts the cards based on the hole locations.
- Sorting performed for one column at a time
- Human operator needed to load/retrieve/move cards at each stage
Hollerith’s MSD-First Radix Sort

- Sort starting from the most significant digit (MSD)
- Then, sort each of the resulting bins recursively
- At the end, combine the decks in order
Hollerith’s MSD-First Radix Sort

- To sort a subset of cards recursively:
 - All the other cards need to be removed from the machine, because the machine can handle only one sorting problem at a time.
 - The human operator needs to keep track of the intermediate card piles to sort these two cards recursively, remove all the other cards from the machine.

```
3 2 9
3 5 5
4 5 7
4 3 6
6 5 7
7 2 0
8 3 9
```

Intermediate pile:
457, 436, 657, 720, 839

```
3 2 9
3 5 5
```
Hollerith’s MSD-First Radix Sort

- MSD-first sorting may require:
 -- very large number of sorting passes
 -- very large number of intermediate card piles to maintain

- \(S(d) \): # of passes needed to sort d-digit numbers (worst-case)
- Recurrence:

\[
S(d) = 10 \ S(d-1) + 1 \quad \text{with} \quad S(1) = 1
\]

Reminder: Recursive call made to each subset with the same most significant digit (MSD)
Hollerith’s MSD-First Radix Sort

Recurrence: $S(d) = 10S(d-1) + 1$

$$S(d) = 10 \cdot S(d-1) + 1$$

$$= 10 \cdot (10 \cdot S(d-2) + 1) + 1$$

$$= 10 \cdot (10 \cdot (10 \cdot S(d-3) + 1) + 1) + 1$$

$$= 10^i \cdot S(d-i) + 10^{i-1} + 10^{i-2} + \ldots + 10^1 + 10^0$$

Iteration terminates when $i = d-1$ with $S(d-(d-1)) = S(1) = 1$

$$S(d) = \sum_{i=0}^{d-1} 10^i = \frac{10^d - 1}{10 - 1} = \frac{1}{9} (10^d - 1)$$

$$S(d) = \frac{1}{9} (10^d - 1)$$
Hollerith’s MSD-First Radix Sort

P(d): # of intermediate card piles maintained (worst-case)

Reminder: Each routing pass generates 9 intermediate piles except the sorting passes on least significant digits (LSDs)

There are \(10^{d-1}\) sorting calls to LSDs

\[
P(d) = 9 (S(d) - 10^{d-1}) = 9 ((10^d - 1)/9 - 10^{d-1})
\]

\[
= (10^d - 1 - 9 \cdot 10^{d-1}) = 10^{d-1} - 1
\]

Alternative solution: Solve the recurrence:

\[
P(d) = 10P(d-1) + 9
\]

\[
P(1) = 0
\]
Hollerith’s MSD-First Radix Sort

- Example: To sort 3 digit numbers, in the worst case:
 \[S(d) = \left(\frac{1}{9} \right) (10^3-1) = 111 \] sorting passes needed
 \[P(d) = 10^{d-1}-1 = 99 \] intermediate card piles generated

- MSD-first approach has more recursive calls and
 intermediate storage requirement
 - Expensive for a “tabulating machine” to sort punched cards
 - Overhead of recursive calls in a modern computer
LSD-First Radix Sort

- Least significant digit (LSD)-first radix sort seems to be a folk invention originated by machine operators.
- It is the counter-intuitive, but the better algorithm.
- Basic algorithm:
 - Sort numbers on their LSD first
 - Combine the cards into a single deck in order
 - Continue this sorting process for the other digits from the LSD to MSD

- Requires only \(d \) sorting passes
- No intermediate card pile generated

Stable sorting needed!!!
LSD-first Radix Sort: Example

Step 1: Sort 1\(^{st}\) digit

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

Step 2: Sort 2\(^{nd}\) digit

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Step 3: Sort 3\(^{rd}\) digit

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>
Correctness of Radix Sort (LSD-first)

Proof by induction:

Base case: $d=1$ is correct (trivial)

Inductive hyp: Assume the first $d-1$ digits are sorted correctly.

Prove that all d digits are sorted correctly after sorting digit d.

Sort based on digit d:

- Two numbers that differ in digit d are correctly sorted (e.g., 355 and 657).
- Two numbers equal in digit d are put in the same order as the input \Rightarrow correct order.

Last 2 digits sorted due to ind. hyp.
Radix Sort: Runtime

- Use counting-sort to sort each digit

 \textit{Reminder}: Counting sort complexity: $\Theta(n+k)$

 - n: size of input array
 - k: the range of the values

- Radix sort runtime: $\Theta(d(n+k))$

 - d: # of digits

- How to choose the d and k?
Radix Sort: Runtime – Example 1

- We have flexibility in choosing d and k
- Assume we are trying to sort 32-bit words
 - We can define each digit to be 4 bits
 - Then, the range for each digit $k = 2^4 = 16$
 - So, counting sort will take $\Theta(n+16)$
 - The number of digits $d = 32/4 = 8$
 - Radix sort runtime: $\Theta(8(n+16)) = \Theta(n)$
We have flexibility in choosing \(d \) and \(k \)

Assume we are trying to sort 32-bit words

- Or, we can define each digit to be 8 bits
- Then, the range for each digit \(k = 2^8 = 256 \)
 - So, counting sort will take \(\Theta(n+256) \)
- The number of digits \(d = 32/8 = 4 \)
- Radix sort runtime: \(\Theta(4(n+256)) = \Theta(n) \)
Radix Sort: Runtime

- Assume we are trying to sort b-bit words
 - Define each digit to be r bits
 - Then, the range for each digit $k = 2^r$
 So, counting sort will take $\Theta(n+2^r)$
 - The number of digits $d = \frac{b}{r}$
 Radix sort runtime:

$$T(n,b) = \Theta\left(\frac{b}{r} (n+2^r)\right)$$
Radix Sort: Runtime Analysis

\[T(n, b) = \Theta \left(\frac{b}{r} (n + 2^r) \right) \]

Minimize \(T(n, b) \) by differentiating and setting to 0

Or, intuitively:

We want to balance the terms \(\frac{b}{r} \) and \(n + 2^r \)

Choose \(r \approx \log n \)

If we choose \(r << \log n \) \(\Rightarrow \) \(n + 2^r \) term doesn’t improve

If we choose \(r >> \log n \) \(\Rightarrow \) \(n + 2^r \) increases exponentially
Radix Sort: Runtime Analysis

Choose $r = \log n$

$$T(n, b) = \Theta\left(\frac{b}{r} (n + 2^r)\right)$$

For numbers in the range from 0 to $n^d - 1$, we have:

- The number of bits $b = \log(n^d) = d \log n$
- Radix sort runs in $\Theta(dn)$
Radix Sort: Conclusions

Choose $r = \log n$ \quad \Rightarrow \quad T(n, b) = \Theta(bn/\log n)$

- **Example**: Compare radix sort with merge sort/heapsort
 1 million (2^{20}) 32-bit numbers ($n = 2^{20}, b = 32$)
 - **Radix sort**: $\left\lceil 32/20 \right\rceil = 2$ passes
 - **Merge sort/heap sort**: $\log n = 20$ passes

- **Downsides**:
 - Radix sort has *little locality of reference* (more cache misses)
 - The version that uses counting sort is not in-place

- **On modern processors**, a well-tuned quicksort implementation typically runs faster.