Lecture 1
Introduction to Analysis of Algorithms

View in slide-show mode
Course Schedule

- Normal schedule:
 - Section 1
 - Tuesday: 09:30-10:20
 - Thursday: 13:30-15:20
 - Section 2
 - Tuesday: 13:30-15:20
 - Friday: 09:30-10:20

- Spare hour
 - Section 1 Tuesday: 08:30-09:20
 - Section 2 Friday: 08:30-09:20
Grading

- 5 MidWeek Exams
 - 13 points each
 - 65 points total
- Final: 35 points
MidWeek Exams (65% of the total grade)

- Like small exams, covering the most recent material
- There will be 5 midweek exam sessions
- Check webpage for dates
- Open book (clean and unused). No notes. No slides.
- See the syllabus for details.
Text Book

- Introduction to Algorithms (Third Edition)
 - Thomas H. Cormen
 - Charles E. Leiserson
 - Ronald L. Rivest
 - Clifford Stein

- Available in the Meteksam Bookstore
Algorithm Definition

- **Algorithm**: A sequence of computational steps that transform the input to the desired output

- Procedure vs. algorithm
 - An algorithm *must halt within finite time* with the right output

- Example:
 - a sequence of n numbers
 - **Sorting Algorithm**
 - sorted permutation of input sequence
Course Objectives

- Learn basic algorithms & data structures
- Gain skills to design new algorithms
- Focus on efficient algorithms
- Design algorithms that
 - are fast
 - use as little memory as possible
 - are correct!
Outline of Lecture 1

- Study two sorting algorithms as examples
 - Insertion sort: Incremental algorithm
 - Merge sort: Divide-and-conquer

- Introduction to runtime analysis
 - Best vs. worst vs. average case
 - Asymptotic analysis
Sorting Problem

Input: Sequence of numbers

\[\langle a_1, a_2, \ldots, a_n \rangle \]

Output: A permutation

\[\Pi = \langle \Pi(1), \Pi(2), \ldots, \Pi(n) \rangle \]

such that

\[a_{\Pi(1)} \leq a_{\Pi(2)} \leq \ldots \leq a_{\Pi(n)} \]
Insertion Sort
Insertion Sort: Basic Idea

- Assume input array: A[1..n]
- Iterate j from 2 to n

![Diagram showing the basic idea of insertion sort]
Pseudo-code notation

- Objective: Express algorithms to humans in a clear and concise way
- Liberal use of English
- Indentation for block structures
- Omission of error handling and other details

\(\rightarrow \) needed in real programs
Algorithm: Insertion Sort (from Section 2.2)

Insertion-Sort (A)

1. for \(j \leftarrow 2 \) to \(n \) do
2. \hspace{1em} key \leftarrow A[j];
3. \hspace{1em} i \leftarrow j - 1;
4. \hspace{1em} while \(i > 0 \) and \(A[i] > \) key do
5. \hspace{2em} A[i+1] \leftarrow A[i];
6. \hspace{2em} i \leftarrow i - 1;
7. \hspace{1em} endwhile
endfor
Algorithm: Insertion Sort

Insertion-Sort (A)

1. for $j \leftarrow 2$ to n do
2. key $\leftarrow A[j]$;
3. $i \leftarrow j - 1$;
4. while $i > 0$ and $A[i] >$ key do
5. $A[i+1] \leftarrow A[i]$;
6. $i \leftarrow i - 1$;
endwhile
7. $A[i+1] \leftarrow$ key;
endfor

Iterate over array elts j

Loop invariant:
- The subarray $A[1..j-1]$ is always sorted

already sorted

key
Algorithm: Insertion Sort

Insertion-Sort (A)

1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
endfor

Shift right the entries in A[1..j-1] that are > key
Algorithm: Insertion Sort

Insertion-Sort (A)

1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
5. A[i+1] ← A[i];
6. i ← i - 1;
 endwhile
7. A[i+1] ← key;
endfor

Insert key to the correct location
End of iter j: A[1..j] is sorted
Insertion Sort - Example

Insertion-Sort (A)

1. **for** \(j \leftarrow 2\) **to** \(n\) **do**
2. \(\text{key} \leftarrow A[j];\)
3. \(i \leftarrow j - 1;\)
4. **while** \(i > 0\) **and** \(A[i] > \text{key}\) **do**
 5. \(A[i+1] \leftarrow A[i];\)
 6. \(i \leftarrow i - 1;\)
 endwhile
7. \(A[i+1] \leftarrow \text{key};\)
endfor
Insertion Sort - Example: Iteration j=2

Insertion-Sort (A)
1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
5. A[i+1] ← A[i];
6. i ← i - 1;
endwhile
7. A[i+1] ← key;
endfor
Insertion Sort - Example: Iteration j=3

Insertion-Sort (A)
1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
5. A[i+1] ← A[i];
6. i ← i - 1;
endwhile
7. A[i+1] ← key;
endfor

What are the entries at the end of iteration j=3?
Insertion Sort - Example: Iteration j=3

Insertion-Sort (A)

1. for \(j \leftarrow 2 \) to \(n \) do
2. key \leftarrow A[j];
3. \(i \leftarrow j - 1 \);
4. while \(i > 0 \) and \(A[i] > key \) do
5. \(A[i+1] \leftarrow A[i] \);
6. \(i \leftarrow i - 1 \);
7. endwhile
8. \(A[i+1] \leftarrow key \);
endfor
Insertion Sort - Example: Iteration j=4

Insertion-Sort (A)
1. for j ← 2 to n do
2. key ← A[j];
3. i ← j - 1;
4. while i > 0 and A[i] > key do
5. A[i+1] ← A[i];
6. i ← i - 1;
endwhile
7. A[i+1] ← key;
endfor
Insertion Sort - Example: Iteration j=5

Insertion-Sort (A)
1. \(\text{for } j \leftarrow 2 \text{ to } n \text{ do} \)
2. \(\text{key } \leftarrow A[j]; \)
3. \(i \leftarrow j - 1; \)
4. \(\text{while } i > 0 \text{ and } A[i] > \text{key} \text{ do} \)
 5. \(A[i+1] \leftarrow A[i]; \)
 6. \(i \leftarrow i - 1; \)
 endwhile
7. \(A[i+1] \leftarrow \text{key}; \)
endfor

What are the entries at the end of iteration j=5?
Insertion Sort - Example: Iteration j=5

Insertion-Sort (A)

1. **for** j ← 2 to n **do**
2. key ← A[j];
3. i ← j - 1;
4. **while** i > 0 **and** A[i] > key **do**
 5. A[i+1] ← A[i];
 6. i ← i - 1;
 endwhile
7. A[i+1] ← key;

endfor
Insertion Sort - Example: Iteration j=6

Insertion-Sort (A)
1. for $j \leftarrow 2$ to n do
2. key $\leftarrow A[j]$;
3. $i \leftarrow j - 1$;
4. while $i > 0$ and $A[i] > key$ do
5. $A[i+1] \leftarrow A[i]$;
6. $i \leftarrow i - 1$;
endwhile
7. $A[i+1] \leftarrow key$;
endfor
Insertion Sort Algorithm - Notes

- Items sorted in-place
 - Elements rearranged within array
 - At most constant number of items stored outside the array at any time (e.g. the variable key)
 - Input array A contains sorted output sequence when the algorithm ends

- Incremental approach
Running Time

- Depends on:
 - Input size (e.g., 6 elements vs 6M elements)
 - Input itself (e.g., partially sorted)

- Usually want upper bound
Kinds of running time analysis

- **Worst Case** *(Usually)*
 \[T(n) = \text{max time on any input of size } n \]

- **Average Case** *(Sometimes)*
 \[T(n) = \text{average time over all inputs of size } n \]
 Assumes statistical distribution of inputs

- **Best Case** *(Rarely)*
 \[T(n) = \text{min time on any input of size } n \]
 BAD: Cheat with slow algorithm that works fast on some inputs
 GOOD: Only for showing bad lower bound

Can modify any algorithm (almost) to have a low best-case running time
 - Check whether input constitutes an output at the very beginning of the algorithm
Running Time

- For **Insertion-Sort**, what is its worst-case time?
 - Depends on speed of primitive operations
 - Relative speed (on same machine)
 - Absolute speed (on different machines)

- **Asymptotic analysis**
 - Ignore machine-dependent constants
 - Look at growth of $T(n)$ as $n \to \infty$
$$\mathcal{O}$$ Notation

- Drop low order terms
- Ignore leading constants

e.g.

$$2n^2 + 5n + 3 = \mathcal{O}(n^2)$$

$$3n^3 + 90n^2 - 2n + 5 = \mathcal{O}(n^3)$$

- *Formal explanations in the next lecture.*
• As n gets large, a $\Theta(n^2)$ algorithm runs faster than a $\Theta(n^3)$ algorithm
Insertion Sort – Runtime Analysis

Cost Insertion-Sort (A)

\(c_1 \) \[1. \text{ for } j \leftarrow 2 \text{ to } n \text{ do} \]
\(c_2 \) \[2. \text{ key } \leftarrow A[j]; \]
\(c_3 \) \[3. \text{ i } \leftarrow j - 1; \]
\(c_4 \) \[4. \text{ while } i > 0 \text{ and } A[i] > \text{ key} \text{ do} \]
\(c_5 \) \[5. \text{ A}[i+1] \leftarrow A[i]; \]
\(c_6 \) \[6. \text{ i } \leftarrow i - 1; \]
\(c_7 \) \[7. \text{ A}[i+1] \leftarrow \text{ key}; \]
\endfor

\(t_j \): The number of times while loop test is executed for \(j \)
How many times is each line executed?

# times	Insertion-Sort (A)
n | 1. for j ← 2 to n do
n-1 | 2. key ← A[j];
n-1 | 3. i ← j - 1;
k_4 | 4. while i > 0 and A[i] > key do
k_5 | 5. A[i+1] ← A[i];
k_6 | 6. i ← i - 1;
n-1 | 7. A[i+1] ← key;

\[k_4 = \sum_{j=2}^{n} t_j \]
\[k_5 = \sum_{j=2}^{n} (t_j - 1) \]
\[k_6 = \sum_{j=2}^{n} (t_j - 1) \]
Insertion Sort – Runtime Analysis

- Sum up costs:

\[T(n) = c_1 n + c_2 (n - 1) + c_3 (n - 1) + c_4 \sum_{j=2}^{n} t_j + \]
\[c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 (n - 1) \]

- What is the **best case** runtime?

- What is the **worst case** runtime?
Question: If $A[1...j]$ is already sorted, $t_j =$?

Insertion-Sort (A)

1. for $j \leftarrow 2$ to n do
2. key $\leftarrow A[j]$;
3. $i \leftarrow j - 1$;
4. while $i > 0$ and $A[i] > key$ do
5. $A[i+1] \leftarrow A[i]$;
6. $i \leftarrow i - 1$;
 endwhile
7. $A[i+1] \leftarrow key$;
endfor

$t_j = 1$
Insertion Sort – Best Case Runtime

- Original function:
 \[
 T(n) = c_1n + c_2(n - 1) + c_3(n - 1) + c_4 \sum_{j=2}^{n} t_j + \\
 c_5 \sum_{j=2}^{n} (t_j - 1) + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7(n - 1)
 \]

- Best-case: Input array is already sorted
 \[t_j = 1 \text{ for all } j\]

 \[T(n) = (c_1 + c_2 + c_3 + c_4 + c_7)n - (c_2 + c_3 + c_4 + c_7)\]
Q: If $A[j]$ is smaller than every entry in $A[1..j-1]$, $t_j =$?

Insertion-Sort (A)

1. for $j \leftarrow 2$ to n do
2. key $\leftarrow A[j]$;
3. $i \leftarrow j - 1$;
4. while $i > 0$ and $A[i] > key$ do
 5. $A[i+1] \leftarrow A[i]$;
 6. $i \leftarrow i - 1$;
5. endwhile
7. $A[i+1] \leftarrow key$;
endfor

$t_j = j$
Insertion Sort – Worst Case Runtime

- Worst case: The input array is reverse sorted
 \[t_j = j \] for all \(j \)

- After derivation, worst case runtime:

\[
T(n) = \frac{1}{2} (c_4 + c_5 + c_6) n^2 + \\
(c_1 + c_2 + c_3 + \frac{1}{2}(c_4 - c_5 - c_6) + c_7) n - (c_2 + c_3 + c_4 + c_7)
\]
Insertion Sort – Asymptotic Runtime Analysis

Insertion-Sort (A)

1. for $j \leftarrow 2$ to n do
2. \
 \
 key $\leftarrow A[j]$; \hspace{1cm} \Theta(1)
3. \
 \
 $i \leftarrow j - 1$;
4. \
 \
 while $i > 0$ and $A[i] > key$ do
5. \
 \
 $A[i+1] \leftarrow A[i]$; \hspace{1cm} \Theta(1)
6. \
 \
 $i \leftarrow i - 1$;
endwhile
7. \
 \
 $A[i+1] \leftarrow key$; \hspace{1cm} \Theta(1)
endfor
Asymptotic Runtime Analysis of Insertion-Sort

- **Worst-case** (input reverse sorted)
 - *Inner loop* is $\Theta(j)$

 $$T(n) = \sum_{j=2}^{n} \Theta(j) = \Theta\left(\sum_{j=2}^{n} j \right) = \Theta(n^2)$$

- **Average case** (all permutations equally likely)
 - *Inner loop* is $\Theta(j/2)$

 $$T(n) = \sum_{j=2}^{n} \Theta(j/2) = \sum_{j=2}^{n} \Theta(j) = \Theta(n^2)$$

 - Often, average case not much better than worst case

- **Is this a fast sorting algorithm?**
 - Yes, for small n. No, for large $n.$
Merge Sort
Merge Sort: Basic Idea

Input array A

Divide

Conquer

Combine

sort this half

sort this half

merge two sorted halves
Merge-Sort (A, p, r)

if p = r then return;
else
 q ← \lfloor (p+r)/2 \rfloor;
 \hspace{2cm} (Divide)

 Merge-Sort (A, p, q);
 \hspace{2cm} (Conquer)

 Merge-Sort (A, q+1, r);
 \hspace{2cm} (Conquer)

 Merge (A, p, q, r);
 \hspace{2cm} (Combine)

endif

• Call **Merge-Sort**(A,1,n) to sort A[1..n]
• Recursion bottoms out when subsequences have length 1
Merge Sort: Example

Merge-Sort \((A, p, r)\)

\[
\begin{align*}
\text{if } p &= r \text{ then} \\
\quad \text{return} \\
\text{else} \\
\quad q &\leftarrow \lfloor (p+r)/2 \rfloor \\
\text{Merge-Sort } (A, p, q) \\
\text{Merge-Sort } (A, q+1, r) \\
\text{Merge}(A, p, q, r) \\
\text{endif}
\end{align*}
\]

\[\begin{array}{cccccc}
p & q & r \\
5 & 2 & 4 & 6 & 1 & 3 \\
2 & 4 & 5 & 1 & 3 & 6 \\
1 & 2 & 3 & 4 & 5 & 6
\end{array}\]
How to merge 2 sorted subarrays?

HW: Study the pseudo-code in the textbook (Sec. 2.3.1)

What is the complexity of this step? $\Theta(n)$
Merge Sort: Correctness

Merge-Sort (A, p, r)

if \(p = r \) then
 return
else
 \(q \leftarrow \lfloor \frac{p+r}{2} \rfloor \)
 Merge-Sort (A, p, q)
 Merge-Sort (A, q+1, r)
 Merge (A, p, q, r)
endif

Base case: \(p = r \)
\(\Rightarrow \) Trivially correct

Inductive hypothesis: **MERGE-SORT** is correct for any subarray that is a *strict* (smaller) *subset* of \(A[p, q] \).

General Case: **MERGE-SORT** is correct for \(A[p, q] \).
\(\Rightarrow \) From inductive hypothesis and correctness of **Merge**.
Merge Sort: Complexity

Merge-Sort \((A, p, r)\) \(\rightarrow\) \(T(n)\)

if \(p = r\) then
 return \(\Theta(1)\)
else
 \(q \left\lfloor \frac{p+r}{2} \right\rfloor\) \(\Theta(1)\)
 Merge-Sort \((A, p, q)\) \(\rightarrow\) \(T(n/2)\)
 Merge-Sort \((A, q+1, r)\) \(\rightarrow\) \(T(n/2)\)
 Merge \((A, p, q, r)\) \(\Theta(n)\)
endif
Merge Sort – Recurrence

- Describe a function recursively in terms of itself
- To analyze the performance of recursive algorithms

- For merge sort:

\[
T(n) = \begin{cases}
\Theta(1) & \text{if } n=1 \\
2T(n/2) + \Theta(n) & \text{otherwise}
\end{cases}
\]
How to solve for $T(n)$?

$T(n) = \begin{cases}
\Theta(1) & \text{if } n=1 \\
2T(n/2) + \Theta(n) & \text{otherwise}
\end{cases}$

- Generally, we will assume $T(n) = \Theta(1)$ for sufficiently small n

- The recurrence above can be rewritten as:

$$T(n) = 2 \ T(n/2) + \Theta(n)$$

- How to solve this recurrence?
Solve Recurrence: \(T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n) \)
Solve Recurrence:

\[T(n) = 2T \left(\frac{n}{2} \right) + \Theta(n) \]
Solve Recurrence: \(T(n) = 2T(n/2) + \Theta(n) \)
Merge Sort Complexity

- Recurrence:
 \[T(n) = 2T(n/2) + \Theta(n) \]

- Solution to recurrence:
 \[T(n) = \Theta(n \log n) \]
Conclusions: Insertion Sort vs. Merge Sort

- $\Theta(n \log n)$ grows more slowly than $\Theta(n^2)$

- Therefore Merge-Sort beats Insertion-Sort in the worst case

- In practice, Merge-Sort beats Insertion-Sort for $n > 30$ or so.