Lecture 4
The Divide-and-Conquer Design Paradigm

View in slide-show mode
Reminder: Merge Sort

Input array A

Divide

sort this half

Conquer

sort this half

Combine

merge two sorted halves
The Divide-and-Conquer Design Paradigm

1. **Divide** the problem (instance) into subproblems.

2. **Conquer** the subproblems by solving them recursively.

3. **Combine** subproblem solutions.
Example: Merge Sort

1. **Divide**: Trivial.
2. **Conquer**: Recursively sort 2 subarrays.
3. **Combine**: Linear-time merge.

\[T(n) = 2 \cdot T(n/2) + \Theta(n) \]

- # subproblems
- subproblem size
- work dividing and combining
Master Theorem: Reminder

\[T(n) = aT\left(\frac{n}{b}\right) + f(n) \]

Case 1:

\[
\frac{n^{\log_b a}}{f(n)} = \Omega(n^\varepsilon)
\]

\[T(n) = \Theta\left(n^{\log_b a}\right) \]

Case 2:

\[
\frac{f(n)}{n^{\log_b a}} = \Theta(\lg^k n)
\]

\[T(n) = \Theta\left(n^{\log_b a} \lg^{k+1} n\right) \]

Case 3:

\[
\frac{n^{\log_b a}}{f(n)} = \Omega(n^\varepsilon)
\]

and \[af\left(\frac{n}{b}\right) \leq cf(n) \text{ for } c < 1 \]

\[T(n) = \Theta(f(n)) \]
Merge Sort: Solving the Recurrence

\[T(n) = 2 \ T(n/2) + \Theta(n) \]

\[a = 2, \quad b = 2, \quad f(n) = \Theta(n), \quad n^{\log_b a} = n \]

Case 2:

\[\frac{f(n)}{n^{\log_b a}} = \Theta(\lg^k n) \]

\[T(n) = \Theta(n^{\log_b a} \lg^{k+1} n) \]

holds for \(k = 0 \)

\[T(n) = \Theta(n \lg n) \]
Binary Search

Find an element in a sorted array:
1. **Divide**: Check middle element.
2. **Conquer**: Recursively search 1 subarray.
3. **Combine**: Trivial.

Example: Find 9

```
3  5  7  8  9  12  15
```
Binary Search

Find an element in a sorted array:

1. **Divide**: Check middle element.
2. **Conquer**: Recursively search 1 subarray.
3. **Combine**: Trivial.

Example: Find 9

3 5 7 8 9 12 15
Binary Search

Find an element in a sorted array:

1. **Divide**: Check middle element.
2. **Conquer**: Recursively search 1 subarray.
3. **Combine**: Trivial.

Example: Find 9

```
3  5  7  8  9  12  15
```
Binary Search

Find an element in a sorted array:

1. **Divide**: Check middle element.
2. **Conquer**: Recursively search 1 subarray.
3. **Combine**: Trivial.

Example: Find 9

3 5 7 8 9 12 15
Binary Search

Find an element in a sorted array:

1. **Divide:** Check middle element.
2. **Conquer:** Recursively search 1 subarray.
3. **Combine:** Trivial.

Example: Find 9

3 5 7 8 **9** 12 15
Binary Search

Find an element in a sorted array:

1. **Divide**: Check middle element.
2. **Conquer**: Recursively search 1 subarray.
3. **Combine**: Trivial.

Example: Find 9
Recurrence for Binary Search

\[T(n) = 1 T(n/2) + \Theta(1) \]

- # subproblems
- subproblem size
- work dividing and combining
Binary Search: Solving the Recurrence

\[T(n) = T(n/2) + \Theta(1) \]

- \(a = 1, \ b = 2, \ f(n) = \Theta(1), \ n^{\log_b a} = n^0 = 1 \)

Case 2:

\[\frac{f(n)}{n^{\log_b a}} = \Theta(\lg^k n) \]

\[T(n) = \Theta(n^{\log_b a} \lg^{k+1} n) \]

holds for \(k = 0 \)

\[T(n) = \Theta(\lg n) \]
Powering a Number

- Problem: Compute a^n, where n is a natural number

```
Naive-Power (a, n)
    powerVal ← 1
    for i ← 1 to n
        powerVal ← powerVal . a
    return powerVal
```

- What is the complexity? $T(n) = \Theta (n)$
Powering a Number: Divide & Conquer

Basic idea:

\[a^n = \begin{cases}
 a^{n/2} \cdot a^{n/2} & \text{if } n \text{ is even} \\
 a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a & \text{if } n \text{ is odd}
\end{cases} \]
Powering a Number: Divide & Conquer

\[
\text{POWER (a, n)} \\
\text{\hspace{1cm} if } n = 0 \text{ then return 1} \\
\text{\hspace{1cm} else if } n \text{ is even then} \\
\text{\hspace{2cm} val } \leftarrow \text{\text{POWER (a, n/2)}} \\
\text{\hspace{2cm} return val } \ast \text{ val} \\
\text{\hspace{1cm} else if } n \text{ is odd then} \\
\text{\hspace{2cm} val } \leftarrow \text{\text{POWER (a, (n-1)/2)}} \\
\text{\hspace{2cm} return val } \ast \text{ val } \ast a
\]
Powering a Number: Solving the Recurrence

\[T(n) = T(n/2) + \Theta(1) \]

- \(a = 1 \), \(b = 2 \), \(f(n) = \Theta(1) \), \(n^\log_b a = n^0 = 1 \)

Case 2:

\[\frac{f(n)}{n^\log_b a} = \Theta(\log^k n) \]

\[T(n) = \Theta(n^\log_b a \log^{k+1} n) \]

holds for \(k = 0 \)

\[T(n) = \Theta(\log n) \]
Matrix Multiplication

Input: \(A = [a_{ij}] \), \(B = [b_{ij}] \).

Output: \(C = [c_{ij}] = A \cdot B \).

\[
\begin{pmatrix}
 c_{11} & c_{12} & \ldots & c_{1n} \\
 c_{21} & c_{22} & \ldots & c_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{n1} & c_{n2} & \ldots & c_{nn}
\end{pmatrix}
= \begin{pmatrix}
 a_{11} & a_{12} & \ldots & a_{1n} \\
 a_{21} & a_{22} & \ldots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \ldots & a_{nn}
\end{pmatrix} \cdot \begin{pmatrix}
 b_{11} & b_{12} & \ldots & b_{1n} \\
 b_{21} & b_{22} & \ldots & b_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 b_{n1} & b_{n2} & \ldots & b_{nn}
\end{pmatrix}
\]

\[c_{ij} = \sum_{1 \leq k \leq n} a_{ik} \cdot b_{kj}\]
Standard Algorithm

for $i \leftarrow 1$ to n
 do for $j \leftarrow 1$ to n
 do $c_{ij} \leftarrow 0$
 for $k \leftarrow 1$ to n
 do $c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj}$

Running time = $\Theta(n^3)$
Matrix Multiplication: Divide & Conquer

IDEA: Divide the $n \times n$ matrix into 2×2 matrix of $(n/2) \times (n/2)$ submatrices

$$C = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

$$c_{11} = a_{11} b_{11} + a_{12} b_{21}$$
Matrix Multiplication: Divide & Conquer

IDEA: **Divide** the \(n \times n \) matrix into

\[2 \times 2 \text{ matrix of } (n/2) \times (n/2) \text{ submatrices} \]

\[
\begin{bmatrix}
 c_{11} & c_{12} \\
 c_{21} & c_{22}
\end{bmatrix} = \begin{bmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{bmatrix} \cdot \begin{bmatrix}
 b_{11} & b_{12} \\
 b_{21} & b_{22}
\end{bmatrix}
\]

\[c_{12} = a_{11} b_{12} + a_{12} b_{22} \]
Matrix Multiplication: Divide & Conquer

IDEA: **Divide** the $n \times n$ matrix into

2×2 matrix of $(n/2)\times(n/2)$ submatrices

$\begin{pmatrix}
\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} & \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \\
\begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} & \begin{bmatrix} \end{bmatrix}
\end{pmatrix} = \begin{bmatrix} \end{bmatrix} \cdot \begin{bmatrix}
\end{bmatrix}$

$c_{21} = a_{21} b_{11} + a_{22} b_{21}$
Matrix Multiplication: Divide & Conquer

IDEA: Divide the $n \times n$ matrix into

2×2 matrix of $(n/2) \times (n/2)$ submatrices

$$
\begin{bmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{bmatrix}
= \begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix}
\cdot \begin{bmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{bmatrix}
$$

$c_{22} = a_{21}b_{12} + a_{22}b_{22}$
Matrix Multiplication: Divide & Conquer

\[
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
= \begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\cdot \begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\]

\[
c_{11} = a_{11} b_{11} + a_{12} b_{21}
\]

\[
c_{12} = a_{11} b_{12} + a_{12} b_{22}
\]

\[
c_{21} = a_{21} b_{11} + a_{22} b_{21}
\]

\[
c_{22} = a_{21} b_{12} + a_{22} b_{22}
\]

- 8 mults of \((n/2)\times(n/2)\) submatrices
- 4 adds of \((n/2)\times(n/2)\) submatrices
Matrix Multiplication: Divide & Conquer

MATRIX-MULTIPLY (A, B)

// Assuming that both A and B are nxn matrices

if n = 1 then return A * B

else

partition A, B, and C as shown before

\[c_{11} = \text{MATRIX-MULTIPLY} (a_{11}, b_{11}) + \text{MATRIX-MULTIPLY} (a_{12}, b_{21}) \]
\[c_{12} = \text{MATRIX-MULTIPLY} (a_{11}, b_{12}) + \text{MATRIX-MULTIPLY} (a_{12}, b_{22}) \]
\[c_{21} = \text{MATRIX-MULTIPLY} (a_{21}, b_{11}) + \text{MATRIX-MULTIPLY} (a_{22}, b_{21}) \]
\[c_{22} = \text{MATRIX-MULTIPLY} (a_{21}, b_{12}) + \text{MATRIX-MULTIPLY} (a_{22}, b_{22}) \]

return C
Matrix Multiplication: Divide & Conquer

Analysis

\[T(n) = 8 \cdot T(n/2) + \Theta(n^2) \]

- 8 recursive calls
- each subproblem has size \(n/2 \)
- submatrix addition
Matrix Multiplication: Solving the Recurrence

\[T(n) = 8 \, T(n/2) + \Theta(n^2) \]

\[a = 8, \quad b = 2, \quad f(n) = \Theta(n^2), \quad n^{\log_b a} = n^3 \]

Case 1:

\[\frac{n^{\log_b a}}{f(n)} = \Omega(n^{\epsilon}) \]

\[T(n) = \Theta(n^{\log_b a}) \]

\[T(n) = \Theta(n^3) \]

No better than the ordinary algorithm!
Matrix Multiplication: Strassen’s Idea

\[
\begin{pmatrix}
 c_{11} & c_{12} \\
 c_{21} & c_{22}
\end{pmatrix} =
\begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{pmatrix} \cdot
\begin{pmatrix}
 b_{11} & b_{12} \\
 b_{21} & b_{22}
\end{pmatrix}
\]

Compute \(c_{11}, c_{12}, c_{21},\) and \(c_{22}\) using 7 recursive multiplications
Matrix Multiplication: Strassen’s Idea

\[
P_1 = a_{11} \times (b_{12} - b_{22})
\]
\[
P_2 = (a_{11} + a_{12}) \times b_{22}
\]
\[
P_3 = (a_{21} + a_{22}) \times b_{11}
\]
\[
P_4 = a_{22} \times (b_{21} - b_{11})
\]
\[
P_5 = (a_{11} + a_{22}) \times (b_{11} + b_{22})
\]
\[
P_6 = (a_{12} - a_{22}) \times (b_{21} + b_{22})
\]
\[
P_7 = (a_{11} - a_{21}) \times (b_{11} + b_{12})
\]

Reminder: Each submatrix is of size \((n/2)\times(n/2)\)

Each add/sub operation takes \(\Theta(n^2)\) time

Compute \(P_1..P_7\) using 7 recursive calls to matrix-multiply

How to compute \(c_{ij}\) **using** \(P_1..P_7\)?
Matrix Multiplication: Strassen’s Idea

\[P_1 = a_{11} \times (b_{12} - b_{22}) \]
\[P_2 = (a_{11} + a_{12}) \times b_{22} \]
\[P_3 = (a_{21} + a_{22}) \times b_{11} \]
\[P_4 = a_{22} \times (b_{21} - b_{11}) \]
\[P_5 = (a_{11} + a_{22}) \times (b_{11} + b_{22}) \]
\[P_6 = (a_{12} - a_{22}) \times (b_{21} + b_{22}) \]
\[P_7 = (a_{11} - a_{21}) \times (b_{11} + b_{12}) \]

\[c_{11} = P_5 + P_4 - P_2 + P_6 \]
\[c_{12} = P_1 + P_2 \]
\[c_{21} = P_3 + P_4 \]
\[c_{22} = P_5 + P_1 - P_3 - P_7 \]

7 recursive multiply calls
18 add/sub operations

Does not rely on commutativity of multiplication
Matrix Multiplication: Strassen’s Idea

\[P_1 = a_{11} \times (b_{12} - b_{22}) \]
\[P_2 = (a_{11} + a_{12}) \times b_{22} \]
\[P_3 = (a_{21} + a_{22}) \times b_{11} \]
\[P_4 = a_{22} \times (b_{21} - b_{11}) \]
\[P_5 = (a_{11} + a_{22}) \times (b_{11} + b_{22}) \]
\[P_6 = (a_{12} - a_{22}) \times (b_{21} + b_{22}) \]
\[P_7 = (a_{11} - a_{21}) \times (b_{11} + b_{12}) \]

e.g. Show that \(c_{12} = P_1 + P_2 \)

\[
\begin{align*}
\text{P}_{12} & = \text{P}_1 + \text{P}_2 \\
& = a_{11}(b_{12} - b_{22}) + (a_{11} + a_{12})b_{22} \\
& = a_{11}b_{12} - a_{11}b_{22} + a_{11}b_{22} + a_{12}b_{22} \\
& = a_{11}b_{12} + a_{12}b_{22}
\end{align*}
\]
Strassen’s Algorithm

1. **Divide**: Partition A and B into \((n/2) \times (n/2)\) submatrices. Form terms to be multiplied using + and −.

2. **Conquer**: Perform 7 multiplications of \((n/2) \times (n/2)\) submatrices recursively.

3. **Combine**: Form C using + and − on \((n/2) \times (n/2)\) submatrices.

Recurrence: \(T(n) = 7 \ T(n/2) + \Theta(n^2)\)
Strassen’s Algorithm: Solving the Recurrence

\[T(n) = 7 \ T(n/2) + \Theta(n^2) \]

Case 1:

\[\frac{n^{\log_b a}}{f(n)} = \Omega(n^\varepsilon) \]

\[T(n) = \Theta(n^{\log_b a}) \]

Note: \(\lg 7 \approx 2.81 \)

\[T(n) = \Theta(n^{\lg 7}) \]
Strassen’s Algorithm

- The number 2.81 may not seem much smaller than 3.
- But, it is significant because the difference is in the exponent.
- Strassen’s algorithm beats the ordinary algorithm on today’s machines for \(n \geq 30 \) or so.
- Best to date: \(\Theta(n^{2.376\ldots}) \) (of theoretical interest only)
VLSI Layout: Binary Tree Embedding

- **Problem**: Embed a complete binary tree with n leaves into a 2D grid with minimum area.

- **Example**:

![Diagram of a binary tree embedded into a grid](image)
Binary Tree Embedding

- Use divide and conquer

1. Embed the root node
2. Embed the left subtree
3. Embed the right subtree

What is the min-area required for n leaves?
Binary Tree Embedding

\[W(n) = 2W(n/2) + 1 \]

\[H(n) = H(n/2) + 1 \]

H(n/2)

W(n/2)

H(n) = H(n/2) + 1

W(n) = 2W(n/2) + 1
Binary Tree Embedding

- Solve the recurrences:
 \[
 W(n) = 2W(n/2) + 1 \\
 H(n) = H(n/2) + 1
 \]

- \[W(n) = \Theta(n) \]
- \[H(n) = \Theta(lgn) \]

- \[\text{Area}(n) = \Theta(nlgn) \]
Binary Tree Embedding

Example:

\[W(n) \]

\[H(n) \]
Binary Tree Embedding: H-Tree

- Use a different divide and conquer method

1. Embed root, left, right nodes
2. Embed subtree 1
3. Embed subtree 2
4. Embed subtree 3
5. Embed subtree 4

What is the min-area required for n leaves?
Binary Tree Embedding: H-Tree

\[W(n) = 2W(n/4) + 1 \]

\[H(n) = 2H(n/4) + 1 \]
Binary Tree Embedding: H-Tree

- Solve the recurrences:
 \[W(n) = 2W(n/4) + 1 \]
 \[H(n) = 2H(n/4) + 1 \]

 \[\Rightarrow W(n) = \Theta(\sqrt{n}) \]
 \[\Rightarrow H(n) = \Theta(\sqrt{n}) \]

- \[\text{Area}(n) = \Theta(n) \]
Binary Tree Embedding: H-Tree

Example:

Example:

\[H(n) \]

\[W(n) \]
Correctness Proofs

- **Proof by induction** commonly used for D&C algorithms

- **Base case**: Show that the algorithm is correct when the recursion bottoms out (i.e., for sufficiently small \(n \))

- **Inductive hypothesis**: Assume the alg. is correct for any recursive call on any smaller subproblem of size \(k \) (\(k < n \))

- **General case**: Based on the inductive hypothesis, prove that the alg. is correct for any input of size \(n \)
Example Correctness Proof: Powering a Number

```plaintext
POWER (a, n)
    if n = 0 then return 1

else if n is even then
    val ← POWER (a, n/2)
    return val * val

else if n is odd then
    val ← POWER (a, (n-1)/2)
    return val * val * a
```
Example Correctness Proof: Powering a Number

- **Base case**: POWER \((a, 0)\) is correct, because it returns 1
- **Ind. hyp**: Assume POWER \((a, k)\) is correct for any \(k < n\)
- **General case**:

 In POWER \((a, n)\) function:

 If \(n\) is even:

 \[\text{val} = a^{n/2} \text{ (due to ind. hyp.)}\]

 it returns \(\text{val} \cdot \text{val} = a^n\)

 If \(n\) is odd:

 \[\text{val} = a^{(n-1)/2} \text{ (due to ind. hyp.)}\]

 it returns \(\text{val} \cdot \text{val} \cdot a = a^n\)

⇒ The correctness proof is complete
Maximum Subarray Problem

- **Input**: An array of values
- **Output**: The contiguous subarray that has the largest sum of elements

Input array:

```
13  -3  -25  20  -3  -16  -23  18  20  -7  12  -22  -4  7
```

the maximum contiguous subarray
Maximum Subarray Problem: Divide & Conquer

- **Basic idea:**
 - Divide the input array into 2 from the middle
 - Pick the best solution among the following:
 1. The max subarray of the *left half*
 2. The max subarray of the *right half*
 3. The max subarray *crossing the mid-point*
Maximum Subarray Problem: Divide & Conquer

- **Divide**: Trivial (divide the array from the middle)
- **Conquer**: Recursively compute the max subarrays of the left and right halves
- **Combine**: Compute the max-subarray crossing the mid-point (*can be done in $\Theta(n)$ time*). Return the max among the following:
 1. the max subarray of the left subarray
 2. the max subarray of the right subarray
 3. the max subarray crossing the mid-point

See textbook for the detailed solution.
Conclusion

- Divide and conquer is just one of several powerful techniques for algorithm design.
- Divide-and-conquer algorithms can be analyzed using recurrences and the master method (so practice this math).
- Can lead to more efficient algorithms