Lecture 5

Quicksort

View in slide-show mode
Quicksort

- One of the most-used algorithms in practice
- Divide-and-conquer algorithm
- In-place algorithm
 - The additional space needed is $O(1)$
 - The sorted array is returned in the input array
 - *Reminder: Insertion-sort is also an in-place algorithm, but Merge-Sort is not in-place.*
- Very practical
Quicksort

1. **Divide:** Partition the array into 2 subarrays such that elements in the lower part ≤ elements in the higher part

 \[
 \begin{array}{ccc}
 \leq x & \geq x \\
 p & q & r
 \end{array}
 \]

2. **Conquer:** Recursively sort 2 subarrays

3. **Combine:** Trivial (because in-place)

- **Key:** Linear-time (\(\Theta(n)\)) partitioning algorithm
Divide: Partition the array around a pivot element

1. Choose a **pivot** element \(x \)

2. Rearrange the array such that:
 - **Left subarray**: All elements \(\leq x \)
 - **Right subarray**: All elements \(\geq x \)

Input:

\[
\begin{array}{cccccccc}
5 & 3 & 2 & 6 & 4 & 1 & 3 & 7 \\
\end{array}
\]

e.g. \(x = 5 \)

After partitioning:

\[
\begin{array}{cccccccc}
3 & 3 & 2 & 1 & 4 & 6 & 5 & 7 \\
\end{array}
\]

\(\leq 5 \) \hspace{2cm} \(\geq 5 \)
Conquer: Recursively Sort the Subarrays

Note: Everything in the left subarray ≤ everything in the right subarray

After conquer:

Note: Combine is trivial after conquer. Array already sorted.
Two partitioning algorithms

1. **Hoare’s algorithm**: Partitions around the first element of subarray \((pivot = x = A[p])\)

 \[
 \begin{array}{cccc}
 \leq x & ? & \geq x \\
p & i & j & r
 \end{array}
 \]

2. **Lomuto’s algorithm**: Partitions around the last element of subarray \((pivot = x = A[r])\)

 \[
 \begin{array}{cccc}
 \leq x & > x & ? & x \\
p & i & j & r
 \end{array}
 \]
Hoare’s Partitioning Algorithm

1. **Choose** a pivot element: \(\text{pivot} = x = A[p] \)
2. **Grow** two regions:
 - from **left to right**: \(A[p..i] \)
 - from **right to left**: \(A[j..r] \)

such that:
- every element in \(A[p..i] \) \(\leq \) pivot
- every element in \(A[j..r] \) \(\geq \) pivot

array \(A \):

\[
\begin{array}{ccccccccccc}
\text{p} & & & & & & & & & & \text{r} \\
\text{x} & & & & & & & & & & \\
\end{array}
\]
Hoare’s Partitioning Algorithm

1. Choose a pivot element: \(\text{pivot} = x = A[p] \)
2. Grow two regions:
 - from left to right: \(A[p..i] \)
 - from right to left: \(A[j..r] \)

 such that:
 - every element in \(A[p..i] \) \(\leq \) pivot
 - every element in \(A[j..r] \) \(\geq \) pivot

array \(A \)
Hoare’s Partitioning Algorithm

1. Choose a pivot element: \(\text{pivot} = x = A[p] \)
2. Grow two regions:
 - from left to right: \(A[p..i] \)
 - from right to left: \(A[j..r] \)

such that:
- every element in \(A[p...i] \leq \text{pivot} \)
- every element in \(A[j...r] \geq \text{pivot} \)

array \(A \):

\[
\begin{array}{c|c|c}
\leq x & ? & \geq x \\
p & i & j \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ r
\end{array}
\]
Hoare’s Partitioning Algorithm

1. Choose a pivot element: \(\text{pivot} = x = A[p] \)
2. Grow two regions:
 - from left to right: \(A[p..i] \)
 - from right to left: \(A[j..r] \)

such that:
- every element in \(A[p...i] \) \(\leq \) pivot
- every element in \(A[j...r] \) \(\geq \) pivot
Hoare’s Partitioning Algorithm

1. Choose a pivot element: \(\text{pivot} = x = A[p] \)
2. Grow two regions:
 - from left to right: \(A[p..i] \)
 - from right to left: \(A[j..r] \)

such that:
- every element in \(A[p...i] \) \(\leq \) pivot
- every element in \(A[j...r] \) \(\geq \) pivot
Hoare’s Partitioning Algorithm

1. Choose a pivot element: \(\text{pivot} = x = A[p] \)
2. Grow two regions:
 - from left to right: \(A[p..i] \)
 - from right to left: \(A[j..r] \)

such that:
 - every element in \(A[p...i] \leq \text{pivot} \)
 - every element in \(A[j...r] \geq \text{pivot} \)
Hoare’s Partitioning Algorithm

H-PARTITION \((A, p, r)\)

- \(pivot \leftarrow A[p]\)
- \(i \leftarrow p - 1\)
- \(j \leftarrow r + 1\)

while true **do**

- repeat \(j \leftarrow j - 1\) **until** \(A[j] \leq pivot\)
- repeat \(i \leftarrow i + 1\) **until** \(A[i] \geq pivot\)

- **if** \(i < j\) **then** exchange \(A[i] \leftrightarrow A[j]\)
- **else** return \(j\)

array A

\[
\begin{array}{cccccccc}
 p & 3 & 2 & 6 & 4 & 1 & 3 & 7 \\
pivot = 5
\end{array}
\]
Hoare’s Partitioning Algorithm

H-PARTITION (A, p, r)

\[pivot \leftarrow A[p] \]
\[i \leftarrow p - 1 \]
\[j \leftarrow r + 1 \]
while true do
 repeat \(j \leftarrow j - 1 \) until \(A[j] \leq pivot \)
 repeat \(i \leftarrow i + 1 \) until \(A[i] \geq pivot \)
 if \(i < j \) then exchange \(A[i] \leftrightarrow A[j] \)
 else return \(j \)

array A

\[
\begin{array}{cccccccc}
5 & 3 & 2 & 6 & 4 & 1 & 3 & 7 \\
\end{array}
\]

pivot = 5
Hoare’s Partitioning Algorithm

H-PARTITION (A, p, r)

\[\text{pivot} \leftarrow A[p] \]
\[i \leftarrow p - 1 \]
\[j \leftarrow r + 1 \]

while true **do**

repeat
\[j \leftarrow j - 1 \text{ until } A[j] \leq \text{pivot} \]

repeat
\[i \leftarrow i + 1 \text{ until } A[i] \geq \text{pivot} \]

if \(i < j \) **then** exchange \(A[i] \leftrightarrow A[j] \)

else return \(j \)

array A

\[
\begin{array}{cccccc}
5 & 3 & 2 & 6 & 4 & 1 & 3 & 7 \\
\end{array}
\]

pivot = 5
Hoare’s Partitioning Algorithm

H-PARTITION (A, p, r)

pivot ← A[p]
i ← p − 1
j ← r + 1
while true do
 repeat j ← j − 1 until A[j] ≤ pivot
 repeat i ← i + 1 until A[i] ≥ pivot
 if i < j then exchange A[i] ↔ A[j]
 else return j

array A

5 3 2 6 4 1 3 7

pivot = 5

p
r

i
j
Hoare’s Partitioning Algorithm

H-PARTITION (A, p, r)

- \(\text{pivot} \leftarrow A[p] \)
- \(i \leftarrow p - 1 \)
- \(j \leftarrow r + 1 \)
- **while** true **do**
 - repeat \(j \leftarrow j - 1 \) **until** \(A[j] \leq \text{pivot} \)
 - repeat \(i \leftarrow i + 1 \) **until** \(A[i] \geq \text{pivot} \)
 - if \(i < j \) then exchange \(A[i] \leftrightarrow A[j] \)
 - else return \(j \)

Array \(A \):

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

pivot = 5
Hoare’s Partitioning Algorithm

H-PARTITION (A, p, r)

1. Set pivot = A[p]
2. Set i = p - 1
3. Set j = r + 1
4. While true do
 1. Repeat j ← j - 1 until A[j] ≤ pivot
 2. Repeat i ← i + 1 until A[i] ≥ pivot
 3. If i < j then exchange A[i] ↔ A[j]
 4. Else return j

Array A:

- p: 3
- i: 3
- r: 7
- j: 5

pivot = 5
Hoare’s Partitioning Algorithm

\[
\text{H-PARTITION} (A, p, r) \\
\text{pivot} \leftarrow A[p] \\
i \leftarrow p - 1 \\
j \leftarrow r + 1 \\
\text{while } \text{true do} \\
\quad \text{repeat } j \leftarrow j - 1 \text{ until } A[j] \leq \text{pivot} \\
\quad \text{repeat } i \leftarrow i + 1 \text{ until } A[i] \geq \text{pivot} \\
\quad \text{if } i < j \text{ then exchange } A[i] \leftrightarrow A[j] \\
\quad \text{else return } j \\
\]

array A

\begin{array}{cccccc}
3 & 3 & 2 & 6 & 4 & 1 & 5 & 7 \\
\end{array}
Hoare’s Partitioning Algorithm

H-PARTITION (A, p, r)

\[pivot \gets A[p] \]
\[i \gets p - 1 \]
\[j \gets r + 1 \]

while true do

repeat \(j \gets j - 1 \) until \(A[j] \leq pivot \)
repeat \(i \gets i + 1 \) until \(A[i] \geq pivot \)
if \(i < j \) then exchange \(A[i] \leftrightarrow A[j] \)
else return \(j \)

array A

\[
\begin{array}{ccccccc}
3 & 3 & 2 & 6 & 4 & 1 & 5 & 7 \\
\end{array}
\]

pivot = 5
Hoare’s Partitioning Algorithm

H-PARTITION (A, p, r)

\[\text{pivot} \leftarrow A[p]\]
\[i \leftarrow p - 1\]
\[j \leftarrow r + 1\]

while true do

repeat \(j \leftarrow j - 1\) until \(A[j] \leq \text{pivot}\)

repeat \(i \leftarrow i + 1\) until \(A[i] \geq \text{pivot}\)

if \(i < j\) then exchange \(A[i] \leftrightarrow A[j]\)
else return \(j\)

array A

| 3 | 3 | 2 | 1 | 4 | 6 | 5 | 7 |

pivot = 5
Hoare’s Partitioning Algorithm

H-PARTITION \((A, p, r)\)

- \(pivot \leftarrow A[p]\)
- \(i \leftarrow p - 1\)
- \(j \leftarrow r + 1\)

while true **do**

- **repeat** \(j \leftarrow j - 1\) **until** \(A[j] \leq pivot\)
- **repeat** \(i \leftarrow i + 1\) **until** \(A[i] \geq pivot\)

if \(i < j\) **then** exchange \(A[i] \leftrightarrow A[j]\)

else return \(j\)

Array \(A\):

- \(3\) \(3\) \(2\) \(1\) \(4\) \(6\) \(5\) \(7\)

pivot = 5

CS 473 – Lecture 5
Cevdet Aykanat and Mustafa Ozdal
Computer Engineering Department, Bilkent University
Hoare’s Partitioning Algorithm

H-PARTITION (A, p, r)

\[
pivot \leftarrow A[p] \\
i \leftarrow p - 1 \\
j \leftarrow r + 1 \\
while \text{true} \ do \\
\quad \text{repeat } j \leftarrow j - 1 \text{ until } A[j] \leq pivot \\
\quad \text{repeat } i \leftarrow i + 1 \text{ until } A[i] \geq pivot \\
\quad \text{if } i < j \text{ then exchange } A[i] \leftrightarrow A[j] \\
\quad \text{else return } j
\]

array A

\[
\begin{array}{cccccc}
3 & 3 & 2 & 1 & 4 & 6 & 5 & 7 \\
\end{array}
\]

pivot = 5
Hoare’s Partitioning Algorithm - Notes

H-PARTITION \((A, p, r)\)

\[\text{pivot } \leftarrow A[p]\]

\[i \leftarrow p - 1\]

\[j \leftarrow r + 1\]

while true do

\[\text{repeat } j \leftarrow j - 1 \text{ **until** } A[j] \leq \text{pivot}\]

\[\text{repeat } i \leftarrow i + 1 \text{ **until** } A[i] \geq \text{pivot}\]

if \(i < j\) then exchange \(A[i] \leftrightarrow A[j]\)

else return \(j\)

The two regions \(A[p..i]\) and \(A[j..r]\) grow until

\[A[i] \geq \text{pivot} \geq A[j]\]

Elements are exchanged when

- \(A[i]\) is **too large** to belong to the left region
- \(A[j]\) is **too small** to belong to the right region

assuming that the inequality is strict.
Hoare’s Partitioning Algorithm

\[\text{H-PARTITION} (A, p, r) \]

\[\text{pivot} \leftarrow A[p] \]
\[i \leftarrow p - 1 \]
\[j \leftarrow r + 1 \]

\[\text{while true do} \]
 \[\text{repeat } j \leftarrow j - 1 \text{ until } A[j] \leq \text{pivot} \]
 \[\text{repeat } i \leftarrow i + 1 \text{ until } A[i] \geq \text{pivot} \]
 \[\text{if } i < j \text{ then exchange } A[i] \leftrightarrow A[j] \]
 \[\text{else return } j \]

What is the asymptotic runtime of Hoare’s partitioning algorithm?

\(\Theta(n) \)
QUICKSORT \((A, p, r)\)

if \(p < r\) then

\(q \leftarrow \text{H-PARTITION}(A, p, r)\)
QUICKSORT\((A, p, q)\)
QUICKSORT\((A, q + 1, r)\)

Initial invocation: QUICKSORT\((A, 1, n)\)
Question

H-PARTITION (A, p, r)

\[
\text{pivot} \leftarrow A[p] \\
i \leftarrow p - 1 \\
j \leftarrow r + 1 \\
\text{while true do} \\
\quad \text{repeat } j \leftarrow j - 1 \text{ until } A[j] \leq \text{pivot} \\
\quad \text{repeat } i \leftarrow i + 1 \text{ until } A[i] \geq \text{pivot} \\
\quad \text{if } i < j \text{ then exchange } A[i] \leftrightarrow A[j] \\
\quad \text{else return } j
\]

QUICKSORT (A, p, r)

\[
\text{if } p < r \text{ then} \\
\quad q \leftarrow \text{H-PARTITION}(A, p, r) \\
\quad \text{QUICKSORT}(A, p, q) \\
\quad \text{QUICKSORT}(A, q +1, r)
\]

- **✗ a)** QUICKSORT will still work correctly.
- **✗ b)** QUICKSORT may return incorrect results for some inputs.
- **✔ c)** QUICKSORT may not terminate for some inputs.
Hoare’s Partitioning Algorithm: Pivot Selection

H-PARTITION \((A, p, r)\)

\[
\begin{align*}
\text{pivot} & \leftarrow A[p] \\
i & \leftarrow p - 1 \\
j & \leftarrow r + 1 \\
\text{while} \text{ true do} \\
\quad \text{repeat } j & \leftarrow j - 1 \text{ until } A[j] \leq \text{ pivot} \\
\quad \text{repeat } i & \leftarrow i + 1 \text{ until } A[i] \geq \text{ pivot} \\
\quad \text{if } i < j \text{ then exchange } A[i] \leftrightarrow A[j] \\
\quad \text{else return } j
\end{align*}
\]

QUICKSORT \((A, p, r)\)

\[
\begin{align*}
\text{if } p < r \text{ then} \\
\quad q & \leftarrow \text{H-PARTITION}(A, p, r) \\
\quad \text{QUICKSORT}(A, p, q) \\
\quad \text{QUICKSORT}(A, q +1, r)
\end{align*}
\]

If \(A[r]\) is chosen as the pivot:

Consider the example where \(A[r]\) is the largest element in the array:

\[
5 \ 3 \ 6 \ 4 \ 3 \ 7
\]

End of H-PARTITION: \(i = j = r\)

In QUICKSORT: \(q = r\)

So, recursive call to:

QUICKSORT \((A, p, q=r)\)

\(\Rightarrow\) infinite loop
Hoare’s Algorithm: Example 2 (pivot = 5)
Hoare’s Algorithm: Example 2 (pivot = 5)

Termination: $i = j = 5$
Correctness of Hoare’s Algorithm

We need to prove 3 claims to show correctness:

a) Indices i & j never reference A outside the interval $A[p..r]$

b) Split is always non-trivial; i.e., $j \neq r$ at termination

c) Every element in $A[p..j] \leq$ every element in $A[j+1..r]$ at termination
Correctness of Hoare’s Algorithm

Notations:

- k: # of times the while-loop iterates until termination
- i_m: the value of index i at the end of iteration m
- j_m: the value of index j at the end of iteration m
- x: the value of the pivot element

Note: We always have $i_1 = p$ and $p \leq j_1 \leq r$ because $x = A[p]$
Correctness of Hoare’s Algorithm

Lemma 1: Either $i_k = j_k$ or $i_k = j_k + 1$ at termination
Correctness of Hoare’s Algorithm

Proof of Lemma 1:
The algorithm terminates when $i \geq j$ (the else condition).
So, it is sufficient to prove that $i_k - j_k \leq 1$

There are 2 cases to consider:

Case 1: $k = 1$, i.e. the algorithm terminates in a single iteration

The proof of case 1 is trivial
Correctness of Hoare’s Algorithm

Proof of Lemma 1 (cont’d):

Case 2: \(k > 1 \), i.e. the alg. does not terminate in a single iter.

By contradiction, assume there is a run with \(i_k - j_k > 1 \)

> \(x \) due to the 1\(^{st}\) repeat-until loop

< \(x \) due to the 2\(^{nd}\) repeat-until loop

CONTRADICTION!

The proof of Lemma 1 is complete!
Correctness of Hoare’s Algorithm

Original correctness claims:

(a) Indices \(i \) & \(j \) never reference \(A \) outside the interval \(A[p…r] \)

(b) Split is always non-trivial; i.e., \(j \neq r \) at termination

Proof:

For \(k = 1 \): Trivial because \(i_1 = j_1 = p \) (see Case 1 in proof of Lemma 2)

For \(k > 1 \):

\(i_k > p \) and \(j_k < r \) (due to the repeat-until loops moving indices)

\(i_k \leq r \) and \(j_k \geq p \) (due to Lemma 1 and the statement above)

\(\Rightarrow \) The proof of claims (a) and (b) complete
Lemma 2: At the end of iteration m, where $m < k$ (i.e. m is not the last iteration), we must have:

$$A[p..i_m] \leq x \quad \text{and} \quad A[j_m..r] \geq x$$
Correctness of Hoare’s Algorithm

Proof of Lemma 2:

Base case: \(m=1 \) and \(k > 1 \) (i.e. the alg. does not terminate in the first iter.)

Proof of base case complete!
Correctness of Hoare’s Algorithm

Proof of Lemma 2 (cont’d):

Inductive hypothesis: At the end of iteration $m-1$, where $m < k$ (i.e. m is not the last iteration), we must have:

$$A[p..i_{m-1}] \leq x \quad \text{and} \quad A[j_{m-1}..r] \geq x$$

General case: The lemma holds for m, where $m < k$
Correctness of Hoare’s Algorithm

For $1 < m < k$, at the end of iteration m, we have:

- $\leq x$ due to the 2^{nd} repeat-until loop
- $> x$ due to the 1^{st} repeat-until loop

Proof of Lemma 2 complete!
Correctness of Hoare’s Algorithm

Original correctness claim:

(c) Every element in $A[p \ldots j] \leq$ every element in $A[j + 1 \ldots r]$ at termination

Proof of claim (c)

There are 3 cases to consider:

Case 1: $k = 1$, i.e. the algorithm terminates in a single iteration

Case 2: $k > 1$ and $i_k = j_k$

Case 3: $k > 1$ and $i_k = j_k + 1$
Correctness of Hoare’s Algorithm

Proof of claim (c):

Case 1: \(k = 1\), i.e. the algorithm terminates in a single iteration

Proof of case 1 complete!
Correctness of Hoare’s Algorithm

Proof of claim (c) (cont’d): Case 2: $k > 1$ and $i_k = j_k$

Due to the 1st repeat-until loop, $i_k > 1$ and $i_k = j_k$

Due to Lemma 2, $i_k - 1 \leq x$

Due to the 2nd repeat-until loop, $j_k - 1 < x$

Due to termination condition, $i_k = x$

Due to Lemma 2, $j_k - 1 \geq x$

Proof of Case 2 complete!
Proof of claim (c) (cont’d): Case 3: $k > 1$ and $i_k = j_k + 1$

$\leq x$ due to Lemma 2

$< x$ due to the 2nd repeat-until loop

$\geq x$ due to Lemma 2

Proof of Case 3 complete!

Correctness proof complete!
Lomuto’s Partitioning Algorithm

1. **Choose** a pivot element: \(\text{pivot} = x = A[r] \)
2. **Grow** two regions:
 - from **left to right**: \(A[p..i] \)
 - from **left to right**: \(A[i+1..j] \)

 such that:
 - every element in \(A[p...i] \) \(\leq \) pivot
 - every element in \(A[i+1...j] \) > pivot

![Diagram of array A with elements p, r, and x]
Lomuto’s Partitioning Algorithm

1. Choose a pivot element: \(\text{pivot} = x = A[r]\)
2. Grow two regions:
 - from left to right: \(A[p..i]\)
 - from left to right: \(A[i+1..j]\)

such that:
- every element in \(A[p..i]\) \(\leq\) pivot
- every element in \(A[i+1..j]\) > pivot
Lomuto’s Partitioning Algorithm

1. Choose a pivot element: \(\text{pivot} = x = A[r] \)
2. Grow two regions:
 - from left to right: \(A[p..i] \)
 - from left to right: \(A[i+1..j] \)

such that:
- every element in \(A[p..i] \) \(\leq \) pivot
- every element in \(A[i+1..j] \) > pivot
Lomuto’s Partitioning Algorithm

1. Choose a pivot element: \(\text{pivot} = x = A[r] \)
2. Grow two regions:
 - from left to right: \(A[p..i] \)
 - from left to right: \(A[i+1..j] \)

such that:
- every element in \(A[p..i] \) \(\leq \) pivot
- every element in \(A[i+1..j] \) \(> \) pivot
Lomuto’s Partitioning Algorithm

1. Choose a pivot element: $pivot = x = A[r]$

2. Grow two regions:
 - from left to right: $A[p..i]$
 - from left to right: $A[i+1..j]$

such that:
- every element in $A[p...i] \leq pivot$
- every element in $A[i+1...j] > pivot$
Lomuto’s Partitioning Algorithm

1. **Choose a pivot element:** pivot = x = A[r]
2. **Grow two regions:**
 - from **left to right:** A[p..i]
 - from **left to right:** A[i+1..j]

such that:
- every element in A[p..i] ≤ pivot
- every element in A[i+1..j] > pivot
Lomuto’s Partitioning Algorithm

\[\text{L-PARTITION}(A, p, r)\]

1. \(pivot \leftarrow A[r]\)
2. \(i \leftarrow p - 1\)
3. \(for\ j \leftarrow p\ \text{to}\ r - 1\ \text{do}\)
 - \(if\ A[j] \leq pivot\ \text{then}\)
 - \(i \leftarrow i + 1\)
 - exchange \(A[i] \leftrightarrow A[j]\)
 - exchange \(A[i + 1] \leftrightarrow A[r]\)
4. return \(i + 1\)

Array \(A\):

\[
\begin{array}{ccccccc}
7 & 8 & 2 & 6 & 5 & 1 & 3 & 4 \\
p & & & & & & & \text{pivot} = 4 \\
r & & & & & & & \\
\end{array}
\]
Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)

1. \(pivot \leftarrow A[r]\)
2. \(i \leftarrow p - 1\)
3. for \(j \leftarrow p\) to \(r - 1\) do
 - if \(A[j] \leq pivot\) then
 - \(i \leftarrow i + 1\)
 - exchange \(A[i] \leftrightarrow A[j]\)
4. exchange \(A[i + 1] \leftrightarrow A[r]\)
5. return \(i + 1\)

Array A:

\[
\begin{array}{cccccccc}
7 & 8 & 2 & 6 & 5 & 1 & 3 & 4 \\
\end{array}
\]

\(p\) \(r\) pivot = 4
Lomuto’s Partitioning Algorithm

L-PARTITION (A, \(p, r \))

\[
\begin{align*}
\text{pivot} & \leftarrow A[r] \\
i & \leftarrow p - 1 \\
\text{for } j & \leftarrow p \text{ to } r - 1 \text{ do} \\
& \quad \text{if } A[j] \leq \text{pivot} \text{ then} \\
& \quad \quad i \leftarrow i + 1 \\
& \quad \quad \text{exchange } A[i] \leftrightarrow A[j] \\
& \quad \text{exchange } A[i + 1] \leftrightarrow A[r] \\
\text{return } i + 1
\end{align*}
\]

array A

\[
\begin{array}{cccccc}
7 & 8 & 2 & 6 & 5 & 1 & 3 & 4 \\
\end{array}
\]

pivot = 4
Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)

\[
\begin{align*}
\text{pivot} & \leftarrow A[r] \\
i & \leftarrow p - 1 \\
\text{for } j & \leftarrow p \text{ to } r - 1 \text{ do} \\
\text{if } A[j] \leq \text{pivot} & \text{ then} \\
\quad i & \leftarrow i + 1 \\
\quad \text{exchange } A[i] & \leftrightarrow A[j] \\
\text{exchange } & A[i + 1] \leftrightarrow A[r] \\
\text{return } & i + 1
\end{align*}
\]

array A

\[
\begin{array}{cccccccc}
7 & 8 & 2 & 6 & 5 & 1 & 3 & 4 \\
p & & & & & & & \text{pivot} = 4 \\
r & & & & & & & \\
i & j
\end{array}
\]
Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)

pivot ← A[r]
i ← p – 1

for j ← p to r – 1 do
 if A[j] ≤ pivot then
 i ← i + 1

return i + 1

array A

<table>
<thead>
<tr>
<th>p</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

pivot = 4
Lomuto’s Partitioning Algorithm

L-PARTITION \((A, p, r)\)

1. \(pivot \leftarrow A[r]\)
2. \(i \leftarrow p - 1\)
3. \(for\ j \leftarrow p\ to\ r - 1\ do\)
 - if \(A[j] \leq pivot\ then\)
 - \(i \leftarrow i + 1\)
 - exchange \(A[i] \leftrightarrow A[j]\)
4. exchange \(A[i + 1] \leftrightarrow A[r]\)
5. return \(i + 1\)

Example

Array \(A = [2, 8, 7, 6, 5, 1, 3, 4]\)

- \(pivot = 4\)
- \(i = 0\)
- \(j = 7\)

Steps:

1. \(pivot = 4\)
2. \(i = 0\)
3. For \(j = 0\ to 6\ do\):
 - If \(A[0] = 2 \leq 4\) then \(i = 1\)
 - Exchange \(A[0] = 2 \leftrightarrow A[1] = 8\)
5. Return \(i + 1 = 2\)
Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)

\(pivot \leftarrow A[r] \)
\(i \leftarrow p - 1 \)

for \(j \leftarrow p \) to \(r - 1 \) do

if \(A[j] \leq pivot \) then

\(i \leftarrow i + 1 \)

exchange \(A[i] \leftrightarrow A[j] \)

exchange \(A[i + 1] \leftrightarrow A[r] \)

return \(i + 1 \)

Array A:

\[
\begin{array}{cccccc}
2 & 8 & 7 & 6 & 5 & 1 & 3 & 4 \\
\end{array}
\]

\(p \quad r \)

\(i \quad j \)

pivot = 4
Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)

\(pivot \leftarrow A[r] \)

\(i \leftarrow p - 1 \)

for \(j \leftarrow p \) to \(r - 1 \) do

if \(A[j] \leq pivot \) then

\(i \leftarrow i + 1 \)

exchange \(A[i] \leftrightarrow A[j] \)

exchange \(A[i + 1] \leftrightarrow A[r] \)

return \(i + 1 \)

array A

\[
\begin{array}{cccccc}
2 & 8 & 7 & 6 & 5 & 1 & 3 & 4 \\
\end{array}
\]

pivot = 4
Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)

\[\text{pivot} \leftarrow A[r] \]
\[i \leftarrow p - 1 \]

\[\text{for } j \leftarrow p \text{ to } r - 1 \text{ do} \]
\[\text{if } A[j] \leq \text{pivot} \text{ then} \]
\[i \leftarrow i + 1 \]
\[\text{exchange } A[i] \leftrightarrow A[j] \]

\[\text{exchange } A[i + 1] \leftrightarrow A[r] \]

\[\text{return } i + 1 \]

array A

\[
\begin{array}{cccccccc}
2 & 1 & 7 & 6 & 5 & 8 & 3 & 4 \\
p & & & & & & & r \\
\end{array}
\]

pivot = 4
Lomuto’s Partitioning Algorithm

L-PARTITION \((A, p, r) \)

\[
\begin{align*}
\text{pivot} & \leftarrow A[r] \\
i & \leftarrow p - 1 \\
\text{for } j & \leftarrow p \text{ to } r - 1 \text{ do} \\
& \quad \text{if } A[j] \leq \text{pivot} \text{ then} \\
& \quad \quad i \leftarrow i + 1 \\
& \quad \quad \text{exchange } A[i] \leftrightarrow A[j] \\
& \text{exchange } A[i + 1] \leftrightarrow A[r] \\
\text{return } i + 1
\end{align*}
\]

array \(A \):

\[
\begin{array}{cccccccc}
2 & 1 & 7 & 6 & 5 & 8 & 3 & 4 \\
p & i & j & r
\end{array}
\]
pivot = 4
Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)

\[
\begin{align*}
\text{pivot} & \leftarrow A[r] \\
i & \leftarrow p - 1 \\
\text{for } j & \leftarrow p \text{ to } r - 1 \text{ do} \\
\text{if } A[j] \leq \text{pivot} & \text{ then} \\
i & \leftarrow i + 1 \\
\text{exchange } A[i] & \leftrightarrow A[j] \\
\text{exchange } A[i + 1] & \leftrightarrow A[r] \\
\text{return } i + 1
\end{align*}
\]

array A

\[
\begin{array}{cccccccc}
2 & 1 & 7 & 6 & 5 & 8 & 3 & 4 \\
p & r & i & j
\end{array}
\]

pivot = 4
Lomuto’s Partitioning Algorithm

L-PARTITION \((A, p, r)\)

- \(pivot \leftarrow A[r]\)
- \(i \leftarrow p - 1\)
- \(for\ j \leftarrow p\ to\ r - 1\ do\)
 - \(if\ A[j] \leq pivot\ then\)
 - \(i \leftarrow i + 1\)
 - exchange \(A[i] \leftrightarrow A[j]\)
- exchange \(A[i + 1] \leftrightarrow A[r]\)
- return \(i + 1\)

Array \(A\):

| 2 | 1 | 3 | 6 | 5 | 8 | 7 | 4 |

\(p\)
\(r\)
\(i\)
\(j\)

\(pivot = 4\)
Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)

\[
\text{pivot} \leftarrow A[r] \\
i \leftarrow p - 1 \\
\text{for } j \leftarrow p \text{ to } r - 1 \text{ do} \\
\quad \text{if } A[j] \leq \text{pivot} \text{ then} \\
\quad \quad i \leftarrow i + 1 \\
\quad \quad \text{exchange } A[i] \leftrightarrow A[j] \\
\text{exchange } A[i + 1] \leftrightarrow A[r] \\
\text{return } i + 1
\]

array A: 2 1 3 6 5 8 7 4

pivot = 4
Lomuto’s Partitioning Algorithm

L-PARTITION \((A, p, r)\)

\[\begin{align*}
\text{pivot} & \leftarrow A[r] \\
i & \leftarrow p - 1 \\
\text{for } j & \leftarrow p \text{ to } r - 1 \text{ do} \\
& \text{if } A[j] \leq \text{pivot} \text{ then} \\
& \quad i \leftarrow i + 1 \\
& \quad \text{exchange } A[i] \leftrightarrow A[j] \\
& \text{exchange } A[i + 1] \leftrightarrow A[r] \\
& \text{return } i + 1
\end{align*}\]
Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)

\[\text{pivot} \leftarrow A[r]\]
\[i \leftarrow p - 1\]

\[\text{for } j \leftarrow p \text{ to } r - 1 \text{ do}\]
\[\text{if } A[j] \leq \text{pivot} \text{ then}\]
\[i \leftarrow i + 1\]
\[\text{exchange } A[i] \leftrightarrow A[j]\]

exchange \(A[i + 1] \leftrightarrow A[r]\)

return \(i + 1\)

\[
\begin{array}{cccccccc}
\text{array } A & 2 & 1 & 3 & 4 & 5 & 8 & 7 & 6 \\
\end{array}
\]

pivot = 4
Lomuto’s Partitioning Algorithm

L-PARTITION (A, p, r)

- $pivot \leftarrow A[r]$
- $i \leftarrow p - 1$
- $for \ j \leftarrow p \ to \ r - 1 \ do$
 - $if \ A[j] \leq pivot \ then$
 - $i \leftarrow i + 1$
 - exchange $A[i] \leftrightarrow A[j]$
 - exchange $A[i + 1] \leftrightarrow A[r]$
- return $i + 1$

What is the runtime of L-PARTITION? $\Theta(n)$
QUICKSORT \((A, p, r)\)

if \(p < r\) then

\[q \leftarrow \textsc{L-PARTITION}(A, p, r) \]

QUICKSORT\((A, p, q - 1)\)

QUICKSORT\((A, q + 1, r)\)

Initial invocation: QUICKSORT\((A, 1, n)\)
Quicksort Animation

from Wikimedia Commons
Comparison of Hoare’s & Lomuto’s Algorithms

Notation: \(n = r - p + 1 \) & \(pivot = A[p] \) (Hoare)

\& \(pivot = A[r] \) (Lomuto)

➢ # of element exchanges: \(e(n) \)

- **Hoare:** \(0 \leq e(n) \leq \left\lfloor \frac{n}{2} \right\rfloor \)
 - **Best:** \(k = 1 \) with \(i_1 = j_1 = p \) (i.e., \(A[p+1...r] > pivot \))
 - **Worst:** \(A[p+1...p+\left\lfloor \frac{n}{2} \right\rfloor - 1] \geq pivot \geq A[p+\left\lfloor \frac{n}{2} \right\rfloor ...r] \)

- **Lomuto:** \(1 \leq e(n) \leq n \)
 - **Best:** \(A[p...r-1] > pivot \)
 - **Worst:** \(A[p...r-1] \leq pivot \)
Comparison of Hoare’s & Lomuto’s Algorithms

- **# of element comparisons:** $c_e(n)$
 - **Hoare:** $n + 1 \leq c_e(n) \leq n + 2$
 - **Best:** $i_k = j_k$
 - **Worst:** $i_k = j_k + 1$
 - **Lomuto:** $c_e(n) = n - 1$

- **# of index comparisons:** $c_i(n)$
 - **Hoare:** $1 \leq c_i(n) \leq \left\lfloor \frac{n}{2} \right\rfloor + 1$ \hspace{1cm} ($c_i(n) = e(n) + 1$)
 - **Lomuto:** $c_i(n) = n - 1$
Comparison of Hoare’s & Lomuto’s Algorithms

- # of index increment/decrement operations: $a(n)$
 - **Hoare:** $n + 1 \leq a(n) \leq n + 2$

 ($a(n) = c_e(n)$)
 - **Lomuto:** $n \leq a(n) \leq 2n - 1$

 ($a(n) = e(n) + (n - 1)$)

- Hoare’s algorithm is in general faster

- Hoare behaves better when pivot is repeated in $A[p…r]$
 - **Hoare:** Evenly distributes them between left & right regions
 - **Lomuto:** Puts all of them to the left region