Lecture 6-b
Randomized Quicksort

View in slide-show mode
Randomized Quicksort

- In the avg-case analysis, we assumed that all permutations of the input array are equally likely.
 - But, this assumption does not always hold
 - e.g. What if all the input arrays are reverse sorted? ➔ Always worst-case behavior

- Ideally, the avg-case runtime should be independent of the input permutation.
- Randomness should be within the algorithm, not based on the distribution of the inputs.
 i.e. The avg case should hold for all possible inputs
Randomized Algorithms

- Alternative to assuming a uniform distribution:
 - Impose a uniform distribution
 - e.g. Choose a random pivot rather than the first element

- Typically useful when:
 - there are many ways that an algorithm can proceed
 - but, it’s difficult to determine a way that is always guaranteed to be good.
 - If there are many good alternatives; simply choose one randomly.
Randomized Algorithms

- Ideally:
 - Runtime should be independent of the specific inputs
 - No specific input should cause worst-case behavior
 - Worst-case should be determined only by output of a random number generator.
Randomized Quicksort

Using Hoare's partitioning algorithm:

```plaintext
R-QUICKSORT(A, p, r)

if p < r then
    q ← R-PARTITION(A, p, r)
    R-QUICKSORT(A, p, q)
    R-QUICKSORT(A, q+1, r)
```

```plaintext
R-PARTITION(A, p, r)

s ← RANDOM(p, r)
return H-PARTITION(A, p, r)
```

Alternatively, permuting the whole array would also work

⇒ but, would be more difficult to analyze
Randomized Quicksort

Using Lomuto’s partitioning algorithm:

\[
\text{R-QUICKSORT}(A, p, r) = \\
\quad \text{if } p < r \text{ then } \\
\quad \quad q \leftarrow \text{R-PARTITION}(A, p, r) \\
\quad \quad \text{R-QUICKSORT}(A, p, q-1) \\
\quad \quad \text{R-QUICKSORT}(A, q+1, r)
\]

\[
\text{R-PARTITION}(A, p, r) = \\
\quad s \leftarrow \text{RANDOM}(p, r) \\
\quad \text{exchange } A[r] \leftrightarrow A[s] \\
\quad \text{return } \text{L-PARTITION}(A, p, r)
\]

Alternatively, permuting the whole array would also work

\[\Rightarrow \text{ but, would be more difficult to analyze}\]
Notations for Formal Analysis

- Assume all elements in $A[p..r]$ are distinct
- Let $n = r - p + 1$

- Let $\text{rank}(x) = |\{A[i]: p \leq i \leq r \text{ and } A[i] \leq x\}|$

 i.e. $\text{rank}(x)$ is the number of array elements with value less than or equal to x

<table>
<thead>
<tr>
<th>5</th>
<th>9</th>
<th>7</th>
<th>6</th>
<th>8</th>
<th>1</th>
<th>4</th>
</tr>
</thead>
</table>

$\text{rank}(5) = 3$

i.e. it is the 3rd smallest element in the array
Formal Analysis for Average Case

- The following analysis will be for Quicksort using Hoare’s partitioning algorithm.
- **Reminder**: The pivot is selected randomly and exchanged with $A[p]$ before calling H-PARTITION

- Let x be the random pivot chosen.
- What is the probability that $\text{rank}(x) = i$ for $i = 1, 2, \ldots n$?
 \[P(\text{rank}(x) = i) = \frac{1}{n} \]
Various Outcomes of H-PARTITION

Assume that \(\text{rank}(x) = 1 \)

\(i.e. \) the \textit{random pivot} chosen is the \textit{smallest} element

What will be the size of the left partition (|L|)?

\textbf{Reminder}: Only the elements less than or equal to \(x \) will be in the left partition.

\[\Rightarrow |L| = 1 \]

pivot = \(x = 2 \)
Various Outcomes of H-PARTITION

Assume that $\text{rank}(x) > 1$

i.e. the random pivot chosen is not the smallest element

What will be the size of the left partition ($|L|$)?

Reminder: Only the elements less than or equal to x will be in the left partition.

Reminder: The pivot will stay in the right region after H-PARTITION if $\text{rank}(x) > 1$

$\Rightarrow |L| = \text{rank}(x) - 1$

$p \ 4 \ 7 \ 6 \ 8 \ 5 \ 9 \ r$

pivot = $x = 5$
Various Outcomes of H-PARTITION - Summary

\[
P(\text{rank}(x) = i) = \frac{1}{n} \quad \text{for } 1 \leq i \leq n
\]

\[\text{if } \text{rank}(x) = 1 \text{ then } |L| = 1\]

\[\text{if } \text{rank}(x) > 1 \text{ then } |L| = \text{rank}(x) - 1\]

\[
P(|L| = 1) = P(\text{rank}(x) = 1) + P(\text{rank}(x) = 2)
\]

\[
P(|L| = i) = P(\text{rank}(x) = i+1)
\quad \text{for } 1 < i < n
\]

\[
P(|L| = 1) = \frac{2}{n}
\]

\[
P(|L| = i) = \frac{1}{n}
\quad \text{for } 1 < i < n
\]
Various Outcomes of H-PARTITION - Summary

<table>
<thead>
<tr>
<th>rank(x)</th>
<th>probability</th>
<th>T(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/n</td>
<td>T(1) + T(n-1) + Θ(n)</td>
</tr>
<tr>
<td>2</td>
<td>1/n</td>
<td>T(1) + T(n-1) + Θ(n)</td>
</tr>
<tr>
<td>3</td>
<td>1/n</td>
<td>T(2) + T(n-2) + Θ(n)</td>
</tr>
<tr>
<td>i+1</td>
<td>1/n</td>
<td>T(i) + T(n-i) + Θ(n)</td>
</tr>
<tr>
<td>n</td>
<td>1/n</td>
<td>T(n-1) + T(1) + Θ(n)</td>
</tr>
</tbody>
</table>
Average - Case Analysis: Recurrence

\[
T(n) = \frac{1}{n} (T(1) + T(n-1)) + \frac{1}{n} (T(1) + T(n-1)) + \frac{1}{n} (T(2) + T(n-2)) + \frac{1}{n} (T(i) + T(n-i)) + \frac{1}{n} (T(n-1) + T(1)) + \Theta(n)
\]

\[
\text{rank}(x) = \begin{cases} 1 & \text{if } x = \text{pivot} \\ i+1 & \text{for } i = 1, 2, \ldots, n \end{cases}
\]
Recurrence

\[T(n) = \frac{1}{n} \sum_{q=1}^{n-1} (T(q) + T(n-q)) + \frac{1}{n} (T(1) + T(n-1)) + \Theta(n) \]

Note: \[\frac{1}{n} (T(1) + T(n-1)) = \frac{1}{n} \left(\Theta(1) + O(n^2) \right) = O(n) \]

\[\Rightarrow T(n) = \frac{1}{n} \sum_{q=1}^{n-1} (T(q) + T(n-q)) + \Theta(n) \]

- for \(k = 1, 2, \ldots, n-1 \) each term \(T(k) \) appears twice
 - once for \(q = k \) and once for \(q = n-k \)

\[T(n) = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + \Theta(n) \]
Solving Recurrence: Substitution

Guess: \(T(n) = O(n \lg n) \)

I.H. : \(T(k) \leq ak \lg k \) for \(k < n \), for some constant \(a > 0 \)

\[
T(n) = \frac{2}{n} \sum_{k=1}^{n-1} T(k) + \Theta(n)
\]
\[
\leq \frac{2}{n} \sum_{k=1}^{n-1} (ak \lg k) + \Theta(n)
\]
\[
= \frac{2a}{n} \sum_{k=1}^{n-1} (k \lg k) + \Theta(n)
\]

Need a tight bound for \(\sum k \lg k \)
Tight bound for $\sum k \lg k$

- Bounding the terms

$$\sum_{k=1}^{n-1} k \lg k \leq \sum_{k=1}^{n-1} n \lg n = n(n-1) \lg n \leq n^2 \lg n$$

This bound is not strong enough because

- $T(n) \leq \frac{2a}{n} n^2 \lg n + \Theta(n)$

 $= 2an \lg n + \Theta(n)$ \quad \Rightarrow \text{couldn’t prove } T(n) \leq an \lg n$
Tight bound for $\sum k \lg k$

- **Splitting summations:** ignore ceilings for simplicity

\[
\sum_{k=1}^{n-1} k \lg k \leq \sum_{k=1}^{n/2-1} k \lg k + \sum_{k=n/2}^{n-1} k \lg k
\]

First summation: $\lg k < \lg(n/2) = \lg n - 1$

Second summation: $\lg k < \lg n$
Splitting: \[\sum_{k=1}^{n-1} k \log k \leq \sum_{k=1}^{n/2-1} k \log k + \sum_{k=n/2}^{n-1} k \log k \]

\[\sum_{k=1}^{n-1} k \log k \leq (\log n - 1) \sum_{k=1}^{n/2-1} k + \log n \sum_{k=n/2}^{n-1} k \]

\[= \log n \sum_{k=1}^{n-1} k - \sum_{k=1}^{n/2-1} k = \frac{1}{2} n(n-1) \log n - \frac{1}{2} n \left(\frac{n}{2} - 1 \right) \]

\[= \frac{1}{2} n^2 \log n - \frac{1}{8} n^2 - \frac{1}{2} n(\log n - 1/2) \]

\[\sum_{k=1}^{n-1} k \log k \leq \frac{1}{2} n^2 \log n - \frac{1}{8} n^2 \quad \text{for } \log n \geq 1/2 \Rightarrow n \geq \sqrt{2} \]
Substituting: \[\sum_{k=1}^{n-1} k \log k \leq \frac{1}{2} n^2 \log n - \frac{1}{8} n^2 \]

\[T(n) \leq \frac{2a}{n} \sum_{k=1}^{n-1} k \log k + \Theta(n) \]
\[\leq \frac{2a}{n} \left(\frac{1}{2} n^2 \log n - \frac{1}{8} n^2 \right) + \Theta(n) \]
\[= an \log n - \left(\frac{a}{4} n - \Theta(n) \right) \]

We can choose \(a \) large enough so that \(\frac{a}{4} n \geq \Theta(n) \)

\[\Rightarrow T(n) \leq an \log n \Rightarrow T(n) = O(n \log n) \]

Q.E.D.